[1] 张阳婷, 黄德启, 王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13.
[2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[3] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv:2305.00972, 2023.
[4] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[6] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. arXiv:1708.02002, 2017.
[7] 史燕燕, 史殿习, 乔子腾, 等. 小样本目标检测研究综述[J]. 计算机学报, 2023, 46(8): 1753-1780.
SHI Y Y, SHI D X, QIAO Z T, et al. A survey on recent advances in few-shot object detection[J]. Chinese Journal of Computers, 2023, 46(8): 1753-1780.
[8] 童小钟, 魏俊宇, 苏绍璟, 等. 融合注意力和多尺度特征的典型水面小目标检测[J]. 仪器仪表学报, 2023, 44(1): 212-222.
TONG X Z, WEI J Y, SU S J, et al. Typical small target detection on water surfaces fusing attention and multi-scale features[J]. Chinese Journal of Scientific Instrument, 2023, 44(1): 212-222.
[9] YI H, LIU B, ZHAO B, et al. Small object detection algorithm based on improved YOLOv8 for remote sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1734-1747.
[10] 马俊燕, 常亚楠. MFE-YOLOX: 无人机航拍下密集小目标检测算法[J]. 重庆邮电大学学报 (自然科学版), 2024, 36(1): 128-135.
MA J Y, CHANG Y N. MFE-YOLOX: dense small target detection algorithm under UAV aerial photography[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2024, 36(1): 128-135.
[11] LIU J, ZHANG J, NI Y, et al. Small-object detection in remote sensing images with super-resolution perception[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 15721-15734.
[12] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and attention gate[J]. Journal of Frontiers of?Computer?Science and Technology, 2024, 18(2): 453-464.
[13] HE L, ZHOU Y, LIU L, et al. Research and application of YOLOv11-based object segmentation in intelligent recognition at construction sites[J]. Buildings, 2024, 14(12): 3777.
[14] 陈佳, 章坚武, 张浙亮. 基于上下文信息与注意力特征的欺骗语音检测[J]. 电信科学, 2023, 39(2): 92-102.
CHEN J, ZHANG J W, ZHANG Z L. Spoof speech detection based on context information and attention feature[J]. Telecommunications Science, 2023, 39(2): 92-102.
[15] CHOLLET F. Xception: deep learning with depthwise separable convolutions[J]. arXiv:1610.02357, 2016.
[16] HAN S, DING H, HAN Z, et al. Head-dominant enhancement with local count for better human detection in crowds[J]. IEEE Transactions on Automation Science and Engineering, 2024, 22: 8794-8804.
[17] 周思捷, 刘天奇, 陈天华. 基于改进YOLOv5算法的水稻病害识别研究[J]. 中国农机化学报, 2024, 45(8): 246-253.
ZHOU S J, LIU T Q, CHEN T H. Research on rice disease recognition based on improved YOLOv5 algorithm[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 246-253.
[18] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, 2019: 213-226.
[19] WEN L, ZHU P, DU D, et al. VisDrone-MOT2019: the vision meets drone multiple object tracking challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, 2019: 189-198.
[20] DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6568-6577.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[22] ZHAO Y, LYU W, XU S, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[23] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[24] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[25] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[26] ZHANG Y, SUN P, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[J]. arXiv:2110. 06864, 2021. |