计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 230-241.DOI: 10.3778/j.issn.1002-8331.2408-0105

• 图形图像处理 • 上一篇    下一篇

融合多尺度层级特征的航拍小目标检测

杨鸿丹,付贵,邵慧超,汪艺欣,邵延华,楚红雨,邓琥   

  1. 1.西南科技大学 信息工程学院,四川 绵阳 621010
    2.中国民航飞行学院 飞行技术学院,四川 广汉 618307
    3.立得空间信息技术股份有限公司,武汉 430070
  • 出版日期:2025-05-01 发布日期:2025-04-30

Small Object Detection in Aerial Imagery Using Multi-Scale Hiearchical Feature Fusion Based Approach

YANG Hongdan, FU Gui, SHAO Huichao, WANG Yixin, SHAO Yanhua, CHU Hongyu, DENG Hu   

  1. 1.School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
    2.College of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, China
    3.Leador Spatial Information Technology Corporation, Wuhan 430070, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 针对航拍图像大视野、小尺寸、分布密集从而导致小目标检测精度低的问题,提出一种基于YOLOv8改进的融合多尺度特征的航拍检测算法,构建了轻量化的L-MobileViT模块捕获特征间的有效关系,减缓信息丢失,提高模型的检测性能。提出了多层级的多尺度融合模块HF(hierarchical fusion),融合深层级的语义信息与底层级空间纹理信息,提高密集场景下小目标的检测能力。在YOLOv8基础上增加小目标检测头删减大目标检测头,提升小目标检测能力,减少小目标的漏检。实验结果表明,改进后的模型在VisDrone2019与UAV航拍交通小目标数据集(UAV-TrafficTinyDataset)中取得了较优的效果,与基线模型相比,mAP@50分别提高17.6%、15.7%,对小目标的检测效果有明显的提升,综合性能优于主流的航拍检测算法,表明改进算法具有更优泛化性与鲁棒性,适用于航拍场景下的检测任务。

关键词: 航拍图像, 小目标检测, 多层级特征融合, L-MobileViT, YOLOv8

Abstract: Aiming at the problem of low accuracy in detecting small objects due to large field of view, small object size, and dense distribution in aerial images, a multi-scale feature fusion aerial detection algorithm based on improved YOLOv8 is proposed. Firstly, a lightweight L-MobileViT module is constructed to capture effective relationships between features, mitigate information loss, and improve the detection performance of the model. Secondly, a hierarchical multi-scale fusion module HF (hierarchical fusion) is proposed to integrate deep spatial information and shallow semantic information, enhancing the detection capability of small objects in dense scenes. Finally, a tiny detection head is added, and a large detection head is removed based on YOLOv8 to focus on the detection ability of small objects and reduce the missed detection rate of small objects. Experimental results show that the improved model achieves superior performance on the VisDrone2019 and UAV-TrafficTinyDataset datasets, with mAP@50 increased by 17.6% and 15.7%, respectively, compared to the baseline model. The detection effect of small objects is significantly improved, and the overall performance is better than mainstream aerial detection algorithms. This demonstrates that the improved algorithm has better generalization and robustness, making it suitable for detection tasks in aerial scenarios.

Key words: UAV images, small target detection, multi-level feature fusion, L-MobileViT, YOLOv8