[1] 冷佳旭, 莫梦竟成, 周应华, 等. 无人机视角下的目标检测研究进展[J]. 中国图象图形学报, 2023, 28(9): 2563-2586.
LENG J X, MO M J C, ZHOU Y H, et al. Recent advances in drone-view object detection[J]. Journal of Image and Graphics,2023, 28(9): 2563-2586.
[2] AMUDHAN A N, SUDHEER A P. Lightweight and computationally faster hypermetropic convolutional neural network for small size object detection[J]. Image and Vision Computing, 2022, 119: 104396.
[3] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[5] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[6] 张智, 易华挥, 郑锦. 聚焦小目标的航拍图像目标检测算法[J]. 电子学报, 2023, 51(4): 944-955.
ZHANG Z, YI H H, ZHENG J. Focusing on small objects detector in aerial images[J]. Acta Electronica Sinica, 2023, 51(4): 944-955.
[7] LIN T, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944.
[8] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[9] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[10] MA N, ZHANG X, ZHENG H T, et al. ShuffleNet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.
[11] DENG S, LI S, XIE K, et al. A global-local self-adaptive network for drone-view object detection[J]. IEEE Transactions on Image Processing, 2020, 30: 1556-1569.
[12] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[13] YE T, QIN W, ZHAO Z, et al. Real-time object detection network in UAV-vision based on CNN and transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13.
[14] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 10781-10790.
[15] YANG G, LEI J, ZHU Z, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2023: 2184-2189.
[16] 吴建成, 郭荣佐, 成嘉伟, 等. 注意力特征融合的快速遥感图像目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 207-216.
WU J C, GUO R Z, CHENG J W, et al. Fast remote sensing image object detection algorithm based on attention feature fusion[J]. Computer Engineering and Applications, 2024, 60(1): 207-216.
[17] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021: 2778-2788.
[18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[19] YANG Y, GAO X, WANG Y, et al. VAMYOLOX: an accurate and efficient object detection algorithm based on visual attention mechanism for UAV optical sensors[J]. IEEE Sensors Journal, 2022, 23(11): 11139-11155.
[20] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 3139-3148.
[21] LIU W, QUIJANO K, CRAWFORD M M. YOLOv5-tassel: detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8085-8094.
[22] YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[23] 李翔, 张涛, 张哲, 等. Transformer在计算机视觉领域的研究综述[J]. 计算机工程与应用, 2023, 59(1): 1-14.
LI X, ZHANG T, ZHANG Z, et al. Survey of Transformer research in computer vision[J]. Computer Engineering and Applications, 2023, 59(1): 1-14.
[24] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[J]. arXiv:2110.02178, 2021.
[25] 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109.
FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109.
[26] LIU W, LU H, FU H, et al. Learning to upsample by learning to sample[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6027-6037.
[27] HOWARD A G. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[28] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014: 740-755.
[29] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 213-226.
[30] 徐慧智, 古旭楠. 无人机视角下交通小目标图像检测算法优化研究[J]. 计算机工程与应用, 2024, 60(21): 194-204.
XU H Z, GU X N. Research on optimization of UAV traffic small target image detection algorithm[J]. Computer Engineering and Applications, 2024, 60(21): 194-204.
[31] ZHANG P, ZHONG Y, LI X. SlimYOLOv3: narrower, faster and better for real-time UAV applications[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW2019), 2019: 1-9.
[32] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models, AWS, Supervise. ly and YouTube integrations[J]. Zenodo, 2021.
[33] XU S, WANG X, LV W, et al. PP-YOLOE: an evolved version of YOLO[J]. arXiv:2203.16250, 2022.
[34] LIU S, ZHA J, SUN J, et al. EdgeYOLO: an edge-real-time object detector[C]//Proceedings of the 2023 42nd Chinese Control Conference (CCC), 2023: 7507-7512.
[35] LIANG S, WU H, ZHEN L, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360.
[36] WU Q, LI Y, HUANG W, et al. C3TB-YOLOv5: integrated YOLOv5 with transformer for object detection in high-resolution remote sensing images[J]. International Journal of Remote Sensing, 2024, 45(8): 2622-2650.
[37] TANG W, SUN J, WANG G. Horizontal feature pyramid network for object detection in UAV images[C]//Proceedings of the 2021 China Automation Congress (CAC), 2021: 7746-7750.
[38] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[39] ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection[C]//Proceedings of the 37th International Conference on Logic Programming(ICLP2021), 2021: 1-16.
[40] 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(14): 629148.
YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629148.
[41] ZHANG Z. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526.
[42] LOU H, DUAN X, GUO J, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323. |