[1] XING Y Y, CHEN S D, ZHU S X, et al. Analysis factors that influence escalator-related injuries in metro stations based on Bayesian networks: a case study in China[J]. International Journal of Environmental Research and Public Health, 2020, 17(2): 481.
[2] OSIPOV V, ZHUKOVA N, SUBBOTIN A, et al. Intelligent escalator passenger safety management[J]. Scientific Reports, 2022, 12: 5506.
[3] GUTIéRREZ J, RODRíGUEZ V, MARTIN S. Comprehensive review of vision-based fall detection systems[J]. Sensors, 2021, 21(3): 947.
[4] ALAM E, SUFIAN A, DUTTA P, et al. Vision-based human fall detection systems using deep learning: a review[J]. Computers in Biology and Medicine, 2022, 146: 105626.
[5] 周燕, 刘紫琴, 曾凡智, 等. 深度学习的二维人体姿态估计综述[J]. 计算机科学与探索, 2021, 15(4): 641-657.
ZHOU Y, LIU Z Q, ZENG F Z, et al. Survey on two-dimensional human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 641-657.
[6] WU L, HUANG C, FEI L K, et al. Video-based fall detection using human pose and constrained generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2179-2194.
[7] YIN Y W, LEI L, LIANG M H, et al. Research on fall detection algorithm for the elderly living alone based on YOLO[C]//Proceedings of the IEEE Conference on Emergency Science and Information Technology (ICESIT 2021), 2021: 403-408.
[8] RAZA A, YOUSAF M H, VELASTIN S A. Human fall detection using YOLO: a real-time and AI-on-the-edge perspective[C]//Proceedings of the 12th International Conference on Pattern Recognition Systems (ICPRS), 2022: 1-6.
[9] ZHAO D A, SONG T, GAO J, et al. YOLO-fall: a novel convolutional neural network model for fall detection in open spaces[J]. IEEE Access, 2024, 12: 26137-26149.
[10] 杨学存, 李杰华, 陈丽媛, 等. 基于人体骨架的扶梯乘客异常行为识别方法[J]. 安全与环境学报, 2024, 24(2): 636-643.
YANG X C, LI J H, CHEN L Y, et al. An abnormal behavior recognition method of escalator passengers based on human skeletons[J]. Journal of Safety and Environment, 2024, 24(2): 636-643.
[11] 滕安. 基于人体姿态识别的行人乘坐自动扶梯跌倒检测方法的研究[D]. 大连: 大连交通大学, 2019.
TENG A. Research of falling detection method of pedestrians taking the escalator based on human pose recognition[D]. Dalian: Dalian Jiaotong University, 2019.
[12] 汪威, 胡旭晓, 吴跃成, 等. 基于深度学习的自动扶梯视频人体动作识别[J]. 软件工程, 2021, 24(9): 24-27.
WANG W, HU X X, WU Y C, et al. Human motion recognition in escalator video based on deep learning[J]. Software Engineering, 2021, 24(9): 24-27.
[13] 林创鲁, 叶亮, 李刚, 等. 基于深度学习的自动扶梯乘客异常行为识别方法研究[J]. 自动化与信息工程, 2022, 43(6): 1-6.
LIN C L, YE L, LI G, et al. Research on identification method of escalator passengers’ abnormal behavior based on deep learning[J]. Automation & Information Engineering, 2022, 43(6): 1-6.
[14] NOOR N, PARK I K. A lightweight skeleton-based 3D-CNN for real-time fall detection and action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 2179-2188.
[15] 王源鹏, 万海斌, 黄凯, 等. 基于YOLOv5s的自动扶梯乘客异常行为实时检测算法[J]. 激光与光电子学进展, 2024, 61(8): 211-218.
WANG Y P, WAN H B, HUANG K, et al. Real-time detection of abnormal behavior of escalator passengers based on YOLOv5s[J]. Laser & Optoelectronics Progress, 2024, 61(8): 211-218.
[16] 梁博. 基于视频的自动扶梯行人摔倒实时检测算法[D]. 太原: 山西大学, 2024.
LIANG B. Real-time detection algorithm of escalator figure falling based on video[D]. Taiyuan: Shanxi University, 2024.
[17] 许腾. 基于计算机视觉的自动扶梯跌倒检测算法研究[D]. 福州: 福建工程学院, 2023.
XU T. A study of computer vision-based escalator fall detection algorithm[D]. Fuzhou: Fujian University of Technology, 2023.
[18] 侯颖, 杨林, 胡鑫, 等. 基于SwinT-YOLOX模型的自动扶梯行人安全检测算法[J]. 计算机工程, 2024, 50(3): 277-289.
HOU Y, YANG L, HU X, et al. Automatic escalator pedestrian safety detection algorithm based on SwinT-YOLOX model[J]. Computer Engineering, 2024, 50(3): 277-289.
[19] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
[20] 杨锋, 丁之桐, 邢蒙蒙, 等. 深度学习的目标检测算法改进综述[J]. 计算机工程与应用, 2023, 59(11): 1-15.
YANG F, DING Z T, XING M M, et al. Review of object detection algorithm improvement in deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 1-15.
[21] JOCHER G, CHAURASIA A, STOKEN A, et al. Ultralytics/YOLOv5: v6.1[EB/OL]. (2022-02-22). https://github.com/ultralytics/YOLOv5/releases/tag/v6.1.
[22] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state- of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[24] JOCHER G, CHAURASIA A, QIU J, et al. Ultralytics/YOLOv8: v8.1.0[EB/OL]. (2024-01-10). https://github.com/ultralytics/ultralytics/tree/v8.1.0.
[25] 张艳, 张明路, 吕晓玲, 等. 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58(15): 1-17.
ZHANG Y, ZHANG M L, LYU X L, et al. Review of research on small target detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(15): 1-17.
[26] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[27] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and?small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2022: 443-459.
[28] SUN R Y, FAN H, TANG Y J, et al. Research on small target detection algorithm for UAV inspection scene based on SPD-conv[C]//Proceedings of the Fourth International Conference on Computer Vision and Data Mining (ICCVDM 2023), 2024: 686-691.
[29] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[30] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[31] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[32] LIU C, WANG K G, LI Q, et al. Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 2024, 170: 276-284.
[33] LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems, 2020: 21002-21012. |