计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (6): 22-35.DOI: 10.3778/j.issn.1002-8331.2405-0328

• 热点与综述 • 上一篇    下一篇

深度学习的多视角三维重建技术综述

王文举,唐邦,顾泽骅,王森   

  1. 1.上海理工大学,上海 200093
    2.上海宝信软件股份有限公司,上海 200093
  • 出版日期:2025-03-15 发布日期:2025-03-14

Overview of Multi-View 3D Reconstruction Techniques in Deep Learning

WANG Wenju, TANG Bang, GU Zehua, WANG Sen   

  1. 1.University of Shanghai for Science and Technology, Shanghai 200093, China
    2.Shanghai Baosight Software Co., Ltd., Shanghai 200093, China
  • Online:2025-03-15 Published:2025-03-14

摘要: 为解决经典的多视角三维重建方法难以重建复杂物体、重建效果不佳以及在高分辨率上的扩展等问题,深度学习方法被引入用以重建具有更高精度的三维模型。系统地总结归纳、分析和比较了使用深度学习方法的多视角三维重建算法,并按照显式几何和隐式几何两种几何表示方式对近几年的多视角三维重建算法进行了分类与梳理。重点介绍了目前具有较高重建精度的将隐式函数以及体渲染相结合的神经隐式三维重建算法,并分别定量、定性分析了该类部分算法在数据集上的结果;另外列举了常用数据集和评价指标,并对未来的研究趋势和发展方向进行了展望。

关键词: 深度学习, 三维重建, 神经隐式表示, 体渲染

Abstract: In order to solve the problems that classic multi-view 3D reconstruction methods are difficult to reconstruct complex objects and have poor reconstruction results, and to extend to high resolution, deep learning methods are introduced to reconstruct 3D models with higher accuracy. Thus multi-view 3D reconstruction algorithm using deep learning methods are systematically summarized, analyzed and compared, and the multi-view 3D reconstruction algorithms in recent years are classified and sorted out according to explicit geometry and implicit geometry representations. Neural implicit 3D reconstruction algorithms that combines implicit functions and volume rendering are mainly introduced, which currently have a high accuracy in reconstruction results, and the quantitative and qualitative analyses are conducted on some of these algorithms. In addition, commonly used datasets and evaluation indicators are listed, and the future research trends and development directions are discussed.

Key words: deep learning, 3D reconstruction, implicit neural representation, volume rendering