[1] 于兴崭, 芦天亮, 杜彦辉, 等. 基于合成图像和Xception改进模型的安卓恶意家族分类方法[J]. 计算机科学, 2023, 50(4): 351-358.
YU X Z, LU T L, DU Y H, et al. Android malware family classification method based on synthetic image and Xception improved model[J]. Computer Science, 2023, 50(4): 351-358.
[2] 范铭, 刘烃, 刘均, 等. 安卓恶意软件检测方法综述[J]. 中国科学: 信息科学, 2020, 50(8): 1148-1177.
FAN M, LIU T, LIU J, et al. Android malware detection: a survey[J]. Scientia Sinica (Informationis), 2020, 50(8): 1148-1177.
[3] ENCK W, ONGTANG M, MCDANIEL P. On lightweight mobile phone application certification[C]//Proceedings of the 16th ACM Conference on Computer and Communications Security, 2009: 235-245.
[4] AU K W Y, ZHOU Y F, HUANG Z, et al. Pscout: analyzing the Android permission specification[C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security, 2012: 217-228.
[5] AAFER Y, DU W, YIN H. DroidAPIMiner: mining API-Level features for robust malware detection in Android[C]//Proceedings of the International Conference on Security and Privacy in Communication Networks. Sydney: Springer International Publishing, 2013: 86-103.
[6] GORLA A, TAVECCHIA I, GROSS F, et al. Checking APP behavior against APP descriptions[C]//Proceedings of the 36th International Conference on Software Engineering, 2014: 1025-1035.
[7] ENCK W, GILBERT P, HAN S, et al. TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones[J]. ACM Transactions on Computer Systems, 2014, 32(2): 1-29.
[8] HORNYACK P, HAN S, JUNG J, et al. These aren’t the droids you’re looking for: retrofitting Android to protect data from imperious applications[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS), Chicago, 2011.
[9] 乐洪舟. Android应用隐私泄露若干问题的研究[D]. 西安: 西安电子科技大学, 2017.
LE H Z. Research on some problems of privacy leakage of Android application[D]. Xi’an: Xidian University, 2017.
[10] ARZT S, RASTHOFER S, FRITZ C, et al. Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps[J]. ACM Sigplan Notices, 2014, 49(6): 259-269.
[11] PANDITA R, XIAO X S, YANG W, et al. WHYPER: towards automating risk assessment of mobile applications[C]//Proceedings of the USENIX Security Symposium, Washington, 2013.
[12] GASCON H, YAMAGUCHI F, ARP D, et al. Structural detection of Android malware using embedded call graphs[C]//Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, 2013: 45-54.
[13] ZHANG M, DUAN Y, YIN H, et al. Semantics-aware Android malware classification using weighted contextual API dependency graphs[C]//Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, 2014: 1105-1116.
[14] HOU S, YE Y, SONG Y, et al. Hindroid: an intelligent Android malware detection system based on structured heterogeneous information network[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 1507-1515.
[15] ZHOU W, ZHOU Y, GRACE M, et al. Fast, scalable detection of “piggybacked” mobile applications[C]//Proceedings of the Third ACM Conference on Data and Application Security and Privacy, 2013: 185-196.
[16] DESHOTELS L, NOTANI V, LAKHOTIA A. Droidlegacy: automated familial classification of Android malware[C]//Proceedings of ACM SIGPLAN on Program Protection and Reverse Engineering Workshop 2014, 2014: 1-12.
[17] KUMAR A, SAGAR K P, KUPPUSAMY K S, et al. Machine learning based malware classification for Android applications using multimodal image representations[C]// Proceedings of the 2016 10th International Conference on Intelligent Systems and Control (ISCO), 2016: 1-6.
[18] YEN Y S, SUN H M. An Android mutation malware detection based on deep learning using visualization of importance from codes[J]. Microelectronics Reliability, 2019, 93: 109-114.
[19] HAN K, KANG B, IM E G, et al. Malware analysis using visualized image matrices[J]. The Scientific World, 2014, 2014: 1-15.
[20] SENANAYAKE J, KALUTARAGE H, AL-KADRI M O. Android mobile malware detection using machine learning: a systematic review[J]. Electronics, 2021, 10(13): 1606.
[21] 彭廷鑫. 基于深度学习的Android恶意软件家族判别[D]. 北京: 北京交通大学, 2020.
PENG T X. Identification of Android malware family based on deep learning[D]. Beijing: Beijing Jiaotong University, 2020.
[22] ZHU H J, YOU Z H, ZHU Z X, et al. DroidDet: effective and robust detection of Android malware using static analysis along with rotation forest model[J]. Neurocomputing, 2018, 272: 638-646.
[23] 程章. 基于异构图特征的安卓恶意软件检测研究[D]. 武汉: 华中科技大学, 2022.
CHENG Z. Research on heterogeneous graph feature based android malware detection[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[24] 杨吉云, 陈钢, 鄢然, 等. 一种基于系统行为序列特征的Android恶意代码检测方法[J]. 重庆大学学报, 2020, 43(9): 54-63.
YANG J Y, CHEN G, YAN R, et al. An Android malware detection method based on system behavior sequences[J]. Journal of Chongqing University, 2020, 43(9): 54-63.
[25] 陈颖, 林雨衡, 王志强, 等. 基于Transformer的安卓恶意软件多分类模型[J]. 信息安全研究, 2023, 9(12): 1138-1144.
CHEN Y, LIN Y H, WANG Z Q, et al. Android malware multi-classification model based on Transformer[J]. Journal of Information Security Research, 2023, 9(12): 1138-1144. |