全文下载排行

    一年内发表文章 | 两年内 | 三年内 | 全部 | 最近1个月下载排行 | 最近1年下载排行

    当前位置: 一年内发表文章
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 农村电商物流下无人机与车辆协同配送路径优化研究
    许菱, 杨林超, 朱文兴, 钟少君
    计算机工程与应用    2024, 60 (1): 310-318.   DOI: 10.3778/j.issn.1002-8331.2306-0115
    摘要882)      PDF(pc) (666KB)(734)    收藏
    无人机配送正在成为解决物流末端配送难题的重要手段。无人机与车辆协同配送模式克服了无人机配送能力不足、安全性不高的弊端,是无人机参与配送的重要途径之一。针对农村电商物流“最后一公里”配送难、配送贵问题,考虑无人机与车辆协同方式、多无人机多包裹配送等约束,以配送成本最小化为目标构建混合整数规划模型并提出一种两阶段算法对无人机与车辆协同配送路径优化问题进行求解。第一阶段通过带约束的自适应K-means算法确定车辆停靠点范围,第二阶段设计爬山算子与分裂算子改进遗传算法,求得无人机与车辆配送路径。最后,通过算例实验验证了模型和算法的可行性与有效性。研究成果有望为农村电商物流末端配送降本增效提供新思路和参考价值。
    参考文献 | 相关文章 | 多维度评价
    2. 激光雷达SLAM算法综述
    刘铭哲, 徐光辉, 唐堂, 钱晓健, 耿明
    计算机工程与应用    2024, 60 (1): 1-14.   DOI: 10.3778/j.issn.1002-8331.2308-0455
    摘要975)      PDF(pc) (854KB)(656)    收藏
    即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里程计、后端优化、回环检测、地图构建模块的作用并总结所使用的算法;按由2D到3D,单传感器到多传感器融合的顺序,对经典的具有代表性的开源算法进行描述和梳理归纳;介绍常用的开源数据集,以及精度评价指标和测评工具;从深度学习、多传感器融合、多机协同和鲁棒性研究四个维度对激光雷达SLAM技术的发展趋势进行展望。
    参考文献 | 相关文章 | 多维度评价
    3. 面向无人机视角下小目标检测的YOLOv8s改进模型
    潘玮, 韦超, 钱春雨, 杨哲
    计算机工程与应用    2024, 60 (9): 142-150.   DOI: 10.3778/j.issn.1002-8331.2312-0043
    摘要482)      PDF(pc) (5858KB)(650)    收藏
    从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以inner-MPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。
    参考文献 | 相关文章 | 多维度评价
    4. 公交辅助无人机的城市物流配送模式研究
    彭勇, 任志
    计算机工程与应用    2024, 60 (7): 335-343.   DOI: 10.3778/j.issn.1002-8331.2212-0252
    摘要682)      PDF(pc) (755KB)(566)    收藏
    电子商务迅猛发展倒逼物流行业不断转型升级,针对各地政府鼓励公共交通发展,倡导绿色低碳的物流配送方式,研究了一种公交辅助无人机的配送模式。对问题做出说明后,构建了以配送成本最小的数学模型,并设计了智能通用变邻域搜索算法对问题求解,同时为提高算法求解效率,引入K-means分簇与贪婪算法生成初始解。针对不同规模算例,进行多种局部搜索策略、多种算法对比实验,验证了算法有效性;选取标准CVRP算例,将单卡车配送、卡车无人机协同配送与公交辅助无人机配送模式进行对比,证明其成本、时间优势;选取北京快速公交2号线及周边客户点,通过改变公交站点间距、发车间隔做出敏感度分析,实验结果证明增大站点间距的影响大于发车间隔的改变。
    参考文献 | 相关文章 | 多维度评价
    5. 基于多模态融合的情感分析算法研究综述
    郭续, 买日旦·吾守尔, 古兰拜尔·吐尔洪
    计算机工程与应用    2024, 60 (2): 1-18.   DOI: 10.3778/j.issn.1002-8331.2305-0439
    摘要690)      PDF(pc) (954KB)(499)    收藏
    情感分析是一项新兴技术,其旨在探索人们对实体的态度,可应用于各种领域和场景,例如产品评价分析、舆情分析、心理健康分析和风险评估。传统的情感分析模型主要关注文本内容,然而一些特殊的表达形式,如讽刺和夸张,则很难通过文本检测出来。随着技术的不断进步,人们现在可以通过音频、图像和视频等多种渠道来表达自己的观点和感受,因此情感分析正向多模态转变,这也为情感分析带来了新的机遇。多模态情感分析除了包含文本信息外,还包含丰富的视觉和听觉信息,利用融合分析可以更准确地推断隐含的情感极性(积极、中性、消极)。多模态情感分析面临的主要挑战是跨模态情感信息的整合,因此,重点介绍了不同融合方法的框架和特点,并对近几年流行的融合算法进行了阐述,同时对目前小样本场景下的多模态情感分析进行了讨论,此外,还介绍了多模态情感分析的发展现状、常用数据集、特征提取算法、应用领域和存在的挑战。期望此综述能够帮助研究人员了解多模态情感分析领域的研究现状,并从中得到启发,开发出更加有效的模型。
    参考文献 | 相关文章 | 多维度评价
    6. 基于多模态数据的人体行为识别方法研究综述
    王彩玲, 闫晶晶, 张智栋
    计算机工程与应用    2024, 60 (9): 1-18.   DOI: 10.3778/j.issn.1002-8331.2310-0090
    摘要278)      PDF(pc) (8541KB)(411)    收藏
    人体行为识别广泛应用于智能安防、自动驾驶和人机交互等领域。随着拍摄设备和传感器技术的发展,可获取用于人体行为识别的数据不再局限于RGB数据,还有深度、骨骼和红外等多模态数据。详细介绍了基于RGB和骨骼数据模态的人体行为识别任务中特征提取方法,包括基于手工标注和基于深度学习的方法。对于RGB数据模态,重点分析了基于双流卷积神经网络、3D卷积神经网络和混合网络的特征提取算法。对于骨骼数据模态,介绍了目前流行的单人和多人姿态评估算法;重点分析了基于卷积神经网络、循环神经网络和图卷积神经网络的分类算法;进一步全面展示了两种数据模态的通用数据集。此外,基于RGB和骨骼各自的数据结构特征,探讨了目前面临的挑战,最后对未来基于深度学习的人体行为识别方法的研究方向进行了展望。
    参考文献 | 相关文章 | 多维度评价
    7. 优化改进YOLOv8实现实时无人机车辆检测的算法
    史涛, 崔杰, 李松
    计算机工程与应用    2024, 60 (9): 79-89.   DOI: 10.3778/j.issn.1002-8331.2312-0291
    摘要304)      PDF(pc) (4614KB)(387)    收藏
    针对现有无人机车辆检测算法精度低、易受背景环境干扰、难以检测微小目标车辆问题,提出了一种改进YOLOv8的无人机车辆检测算法YOLOv8-CX。结合Deformable Convolutional Networks v1-3的优点,提出一种能够灵活采样特征的C2f-DCN模块,以更好地提取不同尺寸大小车辆之间的特征。利用Large Separable Kernel Attention的思想,提出了具有长程依赖性和自适应能力的SPPF-LSKA模块,可以有效减少背景对于车辆检测的干扰。在颈部网络,采用CF-FPN(ment network for tiny object deteciton)特征融合结构,通过结合上下文信息和抑制不同尺度特征之间的冲突信息,提升了对小目标的检测精度。最后,将原始YOLOv8的头部替换为Dynamic Head检测头。通过将尺度、空间和任务三种注意力机制结合统一,进一步提升了模型的检测性能。实验结果表明,在Mapsai数据集上,改进算法与原算法相比准确率(P)、召回率(R)、平均精度(mAP)分别提升了8.5、11.2和6.2个百分点,且算法检测速度达到72.6?FPS,满足无人机车辆检测实时性的要求。通过与其他主流目标检测算法比较,验证了该方法的有效性和卓越性。
    参考文献 | 相关文章 | 多维度评价
    8. 轻量化YOLOv8的小样本钢板缺陷检测算法
    窦智, 高浩然, 刘国奇, 常宝方
    计算机工程与应用    2024, 60 (9): 90-100.   DOI: 10.3778/j.issn.1002-8331.2311-0070
    摘要335)      PDF(pc) (5010KB)(384)    收藏
    钢板的表面积较大,表面缺陷非常常见,且呈现多类少量的特点。深度学习很难有效应用于此类小样本缺陷的检测中。为了解决此问题,提出一种基于轻量化YOLOv8的小样本钢板缺陷检测算法,提出一种基于模糊搜索的交互式数据增强算法,可有效解决训练样本缺失导致网络模型无法得到有效训练的问题,使深度学习应用于该领域成为可能。设计LMSRNet(lightweight multi-scale residual networks)网络替换YOLOv8的主干,以实现网络模型的轻量化,并提高其可移植性。提出CBFPN(context bidirectional feature pyramid network)和ECSA(efficient channel spatial attention)模块,使网络能更有效地提取并融合伤痕特征,同时采用Wise-IoU损失函数以提高检测性能。对比实验结果表明,与原YOLOv8算法相比,改进后的网络参数量只有原网络的30%,计算量是原网络的49%,FPS提高了9?帧/s,精确率、召回率、mAP分别提高了2.9、6.5、5.5个百分点,实验结果充分验证了该算法的优势。
    参考文献 | 相关文章 | 多维度评价
    9. 基于改进YOLO v8的行李追踪技术
    曹超, 顾幸生
    计算机工程与应用    2024, 60 (9): 151-158.   DOI: 10.3778/j.issn.1002-8331.2310-0238
    摘要250)      PDF(pc) (6479KB)(358)    收藏
    在机场行李分拣场景下,传统多目标追踪算法存在目标ID切换率高和目标轨迹误报率高的问题。提出一种基于改进YOLO v8和ByteTrack算法的行李追踪技术。增加了CBAM模块,替换ADH解耦头以及改变训练时的损失函数,增加了检测精度,加强了目标特征的判别性,降低目标的ID切换率。在Byte数据关联中进行了GSI插值后处理,不仅利用了高分框和低分框,也使得长时间遮挡后的追踪效果得到保证,降低了因遮挡产生的ID错误切换。在机场行李分拣数据集上,MOTA和IDF1分别达到了89.9%和90.3%,有了较为明显的提升,能稳定地实现对行李箱ID的追踪。
    参考文献 | 相关文章 | 多维度评价
    10. 深度强化学习求解移动机器人端到端导航问题的研究综述
    何丽, 姚佳程, 廖雨鑫, 张文智, 卢赵清, 袁亮, 肖文东
    计算机工程与应用    2024, 60 (14): 1-13.   DOI: 10.3778/j.issn.1002-8331.2312-0256
    摘要175)      PDF(pc) (4646KB)(336)    收藏
    自主导航是移动机器人完成复杂任务的前提和基础,传统的自主导航系统依赖于地图的精度,无法适应高度复杂的作业和服务场景。移动机器人不依赖先验地图信息,通过深度强化学习与环境交互学习能够自主决策的端到端导航方法成为新的研究热点。大多数现有的分类方法不能全面地总结端到端导航问题的挑战和机遇,根据端到端导航系统的特点,将导航问题的挑战归结为导航智能体感知能力差、学习效率低和导航策略泛化能力弱等关键问题,阐述了端到端导航系统的研究现状和发展趋势,分别详细介绍了近年来针对这些关键问题的代表性研究成果,并对其优势和不足进行了归纳总结。最后,从视觉语言导航、多智能体协同导航、融合超分辨率重建图像的端到端导航和可解释性端到端导航等方面展望了移动机器人端到端导航的未来发展趋势,为移动机器人端到端导航的研究和应用提供一定的思路。
    参考文献 | 相关文章 | 多维度评价
    11. 改进YOLOv8的多尺度轻量型车辆目标检测算法
    张利丰, 田莹
    计算机工程与应用    2024, 60 (3): 129-137.   DOI: 10.3778/j.issn.1002-8331.2309-0145
    摘要342)      PDF(pc) (713KB)(324)    收藏
    针对传统车辆目标检测模型设备需求高、检测精度低、重叠目标漏检率高等问题,提出了一种改进YOLOv8的车辆目标检测算法RBT-YOLO。采用多尺度融合的方式对主干网络进行重构。对BiFPN进行改进,增加卷积操作以及调整输入输出通道个数以适应YOLOv8,加强其特征融合能力。在Neck部分输出的特征图之后加入轻量型注意力机制Triplet Attention,提升模型的特征提取能力。针对真实情况下车辆目标重叠度较高的问题,使用SoftNMS(soft non-maximum suppression)替换原有NMS,使模型对候选框的处理方式更为温和,增强了模型对目标的检测能力,提升了召回率。在Pascal VOC和MS COCO数据集上进行实验,结果表明提出的RBT-YOLO性能超越原始模型,参数量和计算量下降60%左右,mAP分别提高了2.6和3.0个百分点,并在体积和精度上优于其他经典检测模型,具有很强的实用性。
    参考文献 | 相关文章 | 多维度评价
    12. 基于深度元学习的小样本图像分类研究综述
    周伯俊, 陈峙宇
    计算机工程与应用    2024, 60 (8): 1-15.   DOI: 10.3778/j.issn.1002-8331.2308-0271
    摘要259)      PDF(pc) (1091KB)(317)    收藏
    深度元学习是解决小样本分类问题的流行范式。对近年来基于深度元学习的小样本图像分类算法进行了详细综述。从问题的描述出发对基于深度元学习的小样本图像分类算法进行概括,并介绍了常用小样本图像分类数据集及评价准则;分别从基于模型的深度元学习方法、基于优化的深度元学习方法以及基于度量的深度元学习方法三个方面对其中的典型模型以及最新研究进展进行详细阐述。最后,给出了现有算法在常用公开数据集上的性能表现,总结了该课题中的研究热点,并讨论了未来的研究方向。
    参考文献 | 相关文章 | 多维度评价
    13. 改进YOLOv8的轻量化无人机目标检测算法
    胡峻峰, 李柏聪, 朱昊, 黄晓文
    计算机工程与应用    2024, 60 (8): 182-191.   DOI: 10.3778/j.issn.1002-8331.2310-0063
    摘要235)      PDF(pc) (813KB)(315)    收藏
    针对无人机目标检测算法计算复杂难以部署,且长尾分布的无人机数据导致检测精度较低的问题,提出了基于改进YOLOv8的轻量化无人机目标检测算法(PC-YOLOv8-n),可均衡网络检测精度与计算量,并对长尾分布数据有一定泛化能力。使用部分卷积层(PConv)替换YOLOv8中的3×3卷积层,对网络进行轻量化处理,解决网络冗余和计算量复杂的问题;融合双通道特征金字塔,增加自上而下的路径,将深层信息与浅层信息进行融合,同层引入轻量化注意力机制,提升网络的特征提取能力;采用均衡焦点损失(EFL)作为类别损失函数,通过均衡尾部类别在网络训练时的梯度权重,增加网络的类别检测能力。实验结果表明,PC-YOLOv8-n在VisDrone2019数据集中具有良好的表现,在mAP50精度上比原始YOLOv8-n算法提高了1.6个百分点,同时模型的参数和计算量分别降低为2.6×106和7.6 GFLOPs,检测速度达到77.2 FPS。
    参考文献 | 相关文章 | 多维度评价
    14. 推荐算法研究进展及知识图谱可视化分析
    林素青, 罗定南, 张书华
    计算机工程与应用    2024, 60 (21): 1-17.   DOI: 10.3778/j.issn.1002-8331.2312-0032
    摘要239)      PDF(pc) (1215KB)(304)    收藏
    互联网技术的应用普及使网络数据资源呈指数级增长,从海量数据中获取需求信息愈加困难。推荐算法因能有效解决信息过载问题而备受关注,相关研究成果层出不穷。以中国知网(CNKI)和科学网(WOS)核心合集为主要数据源,采集2012—2024年间出版的4?773篇和4?531篇中英文文献,利用可视化分析工具CiteSpace和VOSviewer绘制文献基本信息与关键词共现图谱;借助图谱分析,提炼核心技术关键词:知识图谱、图神经网络和深度学习,并选取与之关联的代表性推荐算法;通过图表直观展示算法核心机制和基本原理,聚焦现有研究的不足与挑战以及针对性解决方案;基于挑战-方案-来源文献的格式,绘制各核心技术关键词所关联算法的知识架构图,实现推荐原理的可视化。
    参考文献 | 相关文章 | 多维度评价
    15. 深度学习优化器进展综述
    常禧龙, 梁琨, 李文涛
    计算机工程与应用    2024, 60 (7): 1-12.   DOI: 10.3778/j.issn.1002-8331.2307-0370
    摘要268)      PDF(pc) (1327KB)(298)    收藏
    优化器是提高深度学习模型性能的关键因素,通过最小化损失函数使得模型的参数和真实参数接近从而提高模型的性能。随着GPT等大语言模型成为自然语言处理领域研究焦点,以梯度下降优化器为核心的传统优化器对大模型的优化效果甚微。因此自适应矩估计类优化器应运而生,其在提高模型泛化能力等方面显著优于传统优化器。以梯度下降、自适应梯度和自适应矩估计三类优化器为主线,分析其原理及优劣。将优化器应用到Transformer架构中,选取法-英翻译任务作为评估基准,通过实验深入探讨优化器在特定任务上的效果差异。实验结果表明,自适应矩估计类优化器在机器翻译任务上有效提高模型的性能。同时,展望优化器的发展方向并给出在具体任务上的应用场景。
    参考文献 | 相关文章 | 多维度评价
    16. 轻量化深度卷积神经网络设计研究进展
    周志飞, 李华, 冯毅雄, 陆见光, 钱松荣, 李少波
    计算机工程与应用    2024, 60 (22): 1-17.   DOI: 10.3778/j.issn.1002-8331.2404-0372
    摘要219)      PDF(pc) (6330KB)(296)    收藏
    轻量化设计是解决深度卷积神经网络(deep convolutional neural network,DCNN)对设备性能和硬件资源依赖性的流行范式,轻量化的目的是在不牺牲网络性能的前提下,提高计算速度和减少内存占用。综述了DCNN的轻量化设计方法,着重回顾了近年来DCNN的研究进展,包括体系设计和模型压缩两大轻量化策略,深入比较了这两类方法的创新性、优势与局限性,并探讨了支撑轻量化模型的底层框架。此外,对轻量化网络已经成功应用的场景进行了描述,并对DCNN轻量化的未来发展趋势进行了预测,旨在为深度卷积神经网络的轻量化研究提供有益的见解和参考。
    参考文献 | 相关文章 | 多维度评价
    17. 改进YOLOv8的道路交通标志目标检测算法
    田鹏, 毛力
    计算机工程与应用    2024, 60 (8): 202-212.   DOI: 10.3778/j.issn.1002-8331.2309-0415
    摘要368)      PDF(pc) (937KB)(294)    收藏
    虽然,当前检测技术日趋成熟,但对于复杂环境下的小目标检测仍然是研究的重难点。针对道路交通场景中普遍存在的交通标志小目标比例较高,环境干扰因素较大的问题,提出了一种基于YOLOv8改进的道路交通标志目标检测算法。由于小目标检测中容易出现漏检的现象,利用BRA(bi-level routing attention)注意力机制提高网络对小目标的感知能力。此外,还利用可形变卷积模块DCNv3(deformable convolution v3),针对特征图中的不规则形状具有更好的特征提取能力,使骨干网络更好地适应不规则的空间结构,更精准地关注重要目标,从而提高模型对遮挡重叠目标的检测能力。DCNv3和BRA模块均在基本不增加模型权重大小的情况下提高模型准确性。同时引入基于辅助边框的Inner-IOU损失函数。在RoadSign、CCTSDB、TSDD、GTSDB四个数据集上,分别进行了小样本训练、大样本训练、单目标检测和多目标检测,实验结果均有所提高。其中,在RoadSign数据集上的实验结果最佳,YOLOv8改进模型的均值平均精度mAP50与mAP50:95分别达到了90.7%和75.1%,相较于基线模型,mAP50与mAP50:95分别提升了5.9和4.8个百分点。实验结果表明,YOLOv8改进模型有效地实现了在复杂道路场景下的交通标志检测。
    参考文献 | 相关文章 | 多维度评价
    18. 视频文本跨模态检索研究综述
    陈磊, 习怡萌, 刘立波
    计算机工程与应用    2024, 60 (4): 1-20.   DOI: 10.3778/j.issn.1002-8331.2306-0382
    摘要315)      PDF(pc) (3662KB)(287)    收藏
    模态代表着数据特定的存在形式,不同模态数据的快速增长,使得多模态学习受到广泛关注。跨模态检索作为多模态学习的一个重要分支,在图文方面已得到显著发展。然而视频相对于图像而言承载了更多模态的数据,也包含更广泛的信息,能够满足用户对信息检索全面性、灵活性的要求,近年来逐渐成为跨模态检索的研究热点。为全面认识和理解视频文本跨模态检索及其前沿工作,对现有代表性方法进行了梳理和综述。首先归纳分析了当前基于深度学习的单向、双向视频文本跨模态检索方法,对每类方法中的经典工作进行了详细分析并阐述了优缺点。接着从实验的角度给出视频文本跨模态检索的基准数据集和评价指标,并在多个常用基准数据集上比较了一些典型方法的性能。最后讨论了视频文本跨模态检索的应用前景、待解决问题及未来研究挑战。
    参考文献 | 相关文章 | 多维度评价
    19. 人工智能在中医诊疗领域的研究综述
    苏尤丽, 胡宣宇, 马世杰, 张雨宁, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木
    计算机工程与应用    2024, 60 (16): 1-18.   DOI: 10.3778/j.issn.1002-8331.2312-0400
    摘要241)      PDF(pc) (6171KB)(271)    收藏
    中医诊疗领域正逐步迈向标准化、客观化、现代化与智能化。在此过程中,人工智能的融入极大地推动了中医诊疗、科学研究及中医传承的发展。从人工智能在中医领域的研究现状出发,梳理了从最初的专家系统和规则引擎,到逐渐成熟的传统机器学习算法,再到如今引领潮流的深度学习三个阶段,人工智能在中医领域的应用发展情况。总结了近年来涌现出的中医知识管理工具和大型模型,这些工具和模型为中医诊疗的智能化提供了坚实的支持。最后针对现阶段人工智能在中医领域中存在的数据公平性、多模态数据理解、模型鲁棒性、个性化医疗及可解释性等多重挑战进行分析。为应对这些挑战,需要持续探索并提出可能的解决方案,以推动中医诊疗智能化的深入发展,更好地满足人民健康需求。
    参考文献 | 相关文章 | 多维度评价
    20. 联邦学习中的攻击手段与防御机制研究综述
    张世文, 陈双, 梁伟, 李仁发
    计算机工程与应用    2024, 60 (5): 1-16.   DOI: 10.3778/j.issn.1002-8331.2306-0243
    摘要247)      PDF(pc) (792KB)(268)    收藏
    联邦学习的攻防技术是联邦学习系统安全的核心问题。联邦学习的攻防技术能大幅降低联邦学习系统被攻击的风险,明显提升联邦学习系统的安全性。深入了解联邦学习的攻防技术,可以推进联邦学习领域的研究,实现联邦学习的广泛应用。因此,对联邦学习的攻防技术进行研究具有十分重要的意义。简要地介绍了联邦学习的概念、基本工作流程、类型及可能存在的安全问题;介绍联邦学习系统可能遭受到的攻击,梳理了相关研究;从联邦学习系统有无目标性的防御措施出发,将防御措施分为通用性防御措施及针对性防御措施两类,并对其进行了针对性的总结;对联邦学习安全性未来的研究方向进行了梳理与分析,为相关研究者在联邦学习安全性方面的研究工作提供了参考。
    参考文献 | 相关文章 | 多维度评价
    21. 基于改进YOLOv8的交通监控车辆检测算法
    周飞, 郭杜杜, 王洋, 王庆庆, 秦音, 杨卓敏, 贺海军
    计算机工程与应用    2024, 60 (6): 110-120.   DOI: 10.3778/j.issn.1002-8331.2310-0101
    摘要258)      PDF(pc) (817KB)(266)    收藏
    针对目前复杂交通监控场景下车辆检测精度不足、检测速度慢的问题,提出一种基于YOLOv8模型的轻量级车辆检测算法。采用FasterNet替换YOLOv8的骨干特征提取网络,减少了冗余计算和内存访问,提高了模型的检测精度和推理速度;在Backbone和Neck部分添加SimAM注意力模块,在不增加原始网络参数的同时增强了目标车辆的重要特征,提高了模型的特征融合能力;针对密集车流下小尺寸车辆检测效果不佳的问题,添加小目标检测头,更好地捕获小尺寸车辆的特征和上下文信息;使用可自适应调整权重系数的Wise-IoU作为改进模型的损失函数,提升了边界框的回归性能和检测的鲁棒性。在UA-DETRAC数据集的实验结果表明,相较于原模型,改进方法在交通监控系统中能够达到较好的检测精度和速度,mAP和FPS分别提高了3.06个百分点和3.36%,有效改善了复杂交通场景下小目标车辆检测效果不佳的问题,并在精度和速度之间取得了很好的平衡。
    参考文献 | 相关文章 | 多维度评价
    22. 改进YOLOv8的航拍图像小目标检测算法
    付锦燚, 张自嘉, 孙伟, 邹凯鑫
    计算机工程与应用    2024, 60 (6): 100-109.   DOI: 10.3778/j.issn.1002-8331.2311-0281
    摘要297)      PDF(pc) (771KB)(264)    收藏
    针对在航拍图像检测任务中,物体和整体图像尺寸都比较小,尺度特征不一和细节信息不清晰,会造成漏检和误检等问题,提出了一种改进小目标检测算法CA-YOLOv8。设计了一种通道特征部分卷积模块CFPConv(channel feature partial convolution),基于此重新构造了C2f中的Bottleneck结构,命名为CFP_C2f,从而替换YOLOv8头部和颈部的部分C2f模块,增强有效通道特征权值,提升多尺度细节特征的获取能力。嵌入一种用以提升上下文聚合能力的模块CAM(context aggregated module),优化特征通道的响应,强化对深层特征的细节感知能力。添加NWD损失函数,将其与CIoU结合作为定位回归损失函数,降低位置偏差的敏感性。充分运用多重注意力机制的优势,把原有检测头替换为DyHead(dynamic head)。在VisDrone2019数据集的实验中,改进的算法较YOLOv8s原模型参数量降低了33.3%,检测精度mAP50值和mAP50:95分别提升了8.7和5.7个百分点,表现出良好的性能,验证了其有效性。
    参考文献 | 相关文章 | 多维度评价
    23. 弱监督显著性目标检测研究进展
    于俊伟, 郭园森, 张自豪, 母亚双
    计算机工程与应用    2024, 60 (10): 1-15.   DOI: 10.3778/j.issn.1002-8331.2308-0206
    摘要188)      PDF(pc) (6029KB)(261)    收藏
    显著性目标检测旨在准确检测和定位图像或视频中最引人注目的目标或区域,为更好地进行目标识别和场景分析提供帮助。尽管全监督显著性检测方法取得一定成效,但获取大规模像素级标注数据集十分困难且昂贵。弱监督检测方法利用相对容易获取的图像级标签或带噪声的弱标签训练模型,在实际应用中表现出良好效果。全面对比了全监督和弱监督显著性检测的主流方法和应用场景,重点分析了常用的弱标签数据标注方法及其对显著目标检测的影响。综述了弱监督条件下显著目标检测方法的最新研究进展,并在常用数据集上对不同弱监督方法的性能进行了比较。最后探讨了弱监督显著性检测在农业、医学和军事等特殊领域的应用前景,指出了该研究领域存在的问题及未来发展趋势。
    参考文献 | 相关文章 | 多维度评价
    24. 改进YOLOv7的小目标检测算法研究
    李安达, 吴瑞明, 李旭东
    计算机工程与应用    2024, 60 (1): 122-134.   DOI: 10.3778/j.issn.1002-8331.2307-0004
    摘要425)      PDF(pc) (884KB)(252)    收藏
    随着深度学习在国内目标检测的不断应用,常规的大、中目标检测已经取得惊人的进步,但由于卷积网络本身的局限性,针对小目标检测依然会出现漏检、误检的问题,以数据集Visdrone2019和数据集FloW-Img为例,对YOLOv7模型进行研究,在网络结构上对骨干网的ELAN模块进行改进,将Focal NeXt block加入到ELAN模块的长短梯度路径中融合来强化输出小目标的特征质量和提高输出特征包含的上下文信息含量,在头部网络引入RepLKDeXt模块,该模块不仅可以取代SPPCSPC模块来简化模型整体结构还可以利用多通道、大卷积核和Cat操作来优化ELAN-H结构,最后引入SIOU损失函数取代CIOU函数以此提高该模型的鲁棒性。结果表明改进后的YOLOv7模型参数量减少计算复杂性降低并在小目标密度高的Visdrone 2019数据集上的检测性能近似不变,在小目标稀疏的FloW-Img数据集上涨幅9.05个百分点,进一步简化了模型并增加了模型的适用范围。
    参考文献 | 相关文章 | 多维度评价
    25. 医学CT影像超分辨率深度学习方法综述
    田苗苗, 支力佳, 张少敏, 晁代福
    计算机工程与应用    2024, 60 (3): 44-60.   DOI: 10.3778/j.issn.1002-8331.2303-0224
    摘要307)      PDF(pc) (867KB)(247)    收藏
    图像超分辨率(SR)是计算机视觉领域提高图像分辨率的重要处理方法之一,在医学图像领域有重要的研究意义和应用价值。高质量和高分辨率的医学CT影像在当前的临床过程中非常重要。近年来,基于深度学习的医学CT影像超分辨率重建技术取得了显著的进展,对该领域内的代表性方法进行了梳理,系统回顾了医学CT影像超分辨率重建技术的发展。介绍了SR基本理论,给出常用的评价指标;重点阐述基于深度学习的医学CT影像超分辨率重建方向的创新与进展,对各个方法的主要特点和性能进行了综合比较分析。最后,讨论了医学CT影像超分辨率重建方向上存在的困难和挑战,并对未来的发展趋势进行了总结与展望,希望能为相关研究提供参考。
    参考文献 | 相关文章 | 多维度评价
    26. 合流区智能网联汽车协同控制方法综述
    李春, 吴志周, 曾广, 赵鑫, 杨志丹
    计算机工程与应用    2024, 60 (12): 1-17.   DOI: 10.3778/j.issn.1002-8331.2310-0310
    摘要152)      PDF(pc) (5963KB)(242)    收藏
    车辆进行交会的区域被指定为上匝道合流区。如果主线和匝道交通流密度达到饱和,匝道合流区的交通效率就会急剧下降。智能网联技术作为当前的交通上的研究热点,依靠智能网联汽车(connected-automated vehicle, CAV)的高精度运动控制和高效率通信,可以显著地提高合流区的通行效率。针对三种不同的控制范式:反馈控制、最优控制和强化学习,对CAV使用的融合策略进行了评估。通过对现有研究的回顾,总结了三种方法在这种情况下的不足之处,并给出了具体的改进措施。此外,全面地总结了这一特定科学领域的最新发展和趋势。
    参考文献 | 相关文章 | 多维度评价
    27. 基于神经网络的图像风格迁移研究进展
    廉露, 田启川, 谭润, 张晓行
    计算机工程与应用    2024, 60 (9): 30-47.   DOI: 10.3778/j.issn.1002-8331.2309-0204
    摘要199)      PDF(pc) (7029KB)(235)    收藏
    图像风格迁移是用风格图像对指定图像的内容进行重映射的过程,是人工智能计算机视觉领域中的一个研究热点。传统的图像风格迁移方法主要基于物理、纹理技术的合成,风格迁移效果较为粗糙并且鲁棒性较差,随着图像数据集的出现和各种深度学习模型网络的提出,涌现了许多图像风格迁移的模型和算法。通过对图像风格迁移研究现状的分析,梳理了图像风格迁移的发展脉络和最新的研究进展,并通过对比分析给出了图像风格迁移未来的研究方向。
    参考文献 | 相关文章 | 多维度评价
    28. 基于YOLOv5的轻量级雾天目标检测方法
    赖镜安, 陈紫强, 孙宗威, 裴庆祺
    计算机工程与应用    2024, 60 (6): 78-88.   DOI: 10.3778/j.issn.1002-8331.2308-0029
    摘要243)      PDF(pc) (1220KB)(232)    收藏
    针对雾天场景下目标检测算法精度较低、模型复杂度较高,提出一种基于YOLOv5的轻量级雾天目标检测方法。采用感受野注意力模块(RFAblock)通过交互感受野特征信息,对感受野添加注意力机制,提高特征提取能力;采用轻量化网络Slimneck作为颈部结构,在保持精度的同时降低模型参数和复杂度;在损失函数中引入真实框与预测框之间的角度向量,提高训练速度和推理的准确性;采用PNMS(precise non-maximum suppression)改进候选框选择机制,降低车辆遮挡情况下的漏检率。在真实雾天数据集RTTS和合成雾天数据集Foggy Cityscapes上进行测试,实验结果表明,与YOLOv5l相比mAP50分别提高了4.9和3.5个百分点,模型参数量仅为YOLOv5l的54.6%。
    参考文献 | 相关文章 | 多维度评价
    29. 基于ATO-YOLO的小目标检测算法
    苏佳, 秦一畅, 贾泽, 王静
    计算机工程与应用    2024, 60 (6): 68-77.   DOI: 10.3778/j.issn.1002-8331.2308-0385
    摘要247)      PDF(pc) (795KB)(230)    收藏
    小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(adaptive feature extraction,AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。设计一种三重特征融合机制(triple feature fusion,TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。引入一种输出重构模块(output reconstruction,ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1个百分点,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。
    参考文献 | 相关文章 | 多维度评价
    30. 农业知识图谱研究综述
    唐闻涛, 胡泽林
    计算机工程与应用    2024, 60 (2): 63-76.   DOI: 10.3778/j.issn.1002-8331.2305-0203
    摘要301)      PDF(pc) (629KB)(229)    收藏
    知识图谱是大数据时代下知识工程的关键技术。利用知识图谱强大的语义理解和知识组织能力,可以解决现代化农业建设中农业知识分散无序、知识覆盖范围不足等问题针对农业领域数据复杂、专业性强等特点,给出了农业知识图谱的构建方法与框架;综述了农业知识图谱构建中本体构建、知识抽取、知识融合以及知识推理四个关键技术的国内外研究现状;系统梳理了农业知识图谱在决策支持、智能问答与推荐系统的应用;最后,介绍了几个具体的农业知识图谱实例。根据农业知识图谱的研究现状,对其未来的研究方向进行了展望。
    参考文献 | 相关文章 | 多维度评价
    31. CNN-Transformer特征融合多目标跟踪算法
    张英俊, 白小辉, 谢斌红
    计算机工程与应用    2024, 60 (2): 180-190.   DOI: 10.3778/j.issn.1002-8331.2211-0028
    摘要389)      PDF(pc) (787KB)(229)    收藏
    在卷积神经网络(CNN)中,卷积运算能高效地提取目标的局部特征,却难以捕获全局表示;而在视觉Transformer中,注意力机制可以捕获长距离的特征依赖,但会忽略局部特征细节。针对以上问题,提出一种基于CNN-Transformer双分支主干网络进行特征提取和融合的多目标跟踪算法CTMOT(CNN-transformer multi-object tracking)。使用基于CNN和Transformer双分支并行的主干网络分别提取图像的局部和全局特征。使用双向桥接模块(two-way braidge module,TBM)对两种特征进行充分融合。将融合后的特征输入两组并行的解码器进行处理。将解码器输出的检测框和跟踪框进行匹配,完成多目标跟踪任务。在多目标跟踪数据集MOT17、MOT20、KITTI以及UA-DETRAC上进行评估,CTMOT算法的MOTP和IDs指标在四个数据集上均达到了SOTA效果,MOTA指标分别达到了76.4%、66.3%、92.36%和88.57%,在MOT数据集上与SOTA方法效果相当,在KITTI数据集上达到SOTA效果。由于同时完成目标检测和关联,能够端到端进行目标跟踪,跟踪速度可达35?FPS,表明CTMOT算法在跟踪的实时性和准确性上达到了较好的平衡,具有较大潜力。
    参考文献 | 相关文章 | 多维度评价
    32. 基于图神经网络的文本分类方法研究综述
    苏易礌, 李卫军, 刘雪洋, 丁建平, 刘世侠, 李浩南, 李贯峰
    计算机工程与应用    2024, 60 (19): 1-17.   DOI: 10.3778/j.issn.1002-8331.2403-0142
    摘要192)      PDF(pc) (3425KB)(229)    收藏
    文本分类是自然语言处理领域中的一个重要任务,旨在将给定的文本数据分配到预定义的一组类别中。传统的文本分类方法只能处理欧氏空间的数据,不能处理图这种非欧氏数据。而对于图结构的文本数据无法直接处理,无法捕捉图中的非欧氏结构。因此,如何将图神经网络应用到文本分类任务中是目前的研究热点之一。对基于图神经网络的文本分类方法进行了综述,概述了基于机器学习和基于深度学习的传统文本分类方法,总结了图卷积神经网络的背景和原理;根据不同类型的图网络详细阐述了基于图神经网络的文本分类方法,同时对图神经网络模型在文本分类中的应用进行了深入分析;对目前基于图神经网络的文本分类模型进行了对比实验,讨论了模型的分类性能;提出了未来的研究方向,以推动该领域的进一步发展。
    参考文献 | 相关文章 | 多维度评价
    33. 视觉大模型SAM在医学图像分割中的应用综述
    孙兴, 蔡肖红, 李明, 张帅, 马金刚
    计算机工程与应用    2024, 60 (17): 1-16.   DOI: 10.3778/j.issn.1002-8331.2401-0136
    摘要224)      PDF(pc) (7912KB)(226)    收藏
    随着大模型技术的不断发展,以分割一切模型(segment anything model,SAM)为代表的视觉大模型在图像分割领域取得重要突破。SAM通过提示驱动完成一系列下游分割任务,旨在统一解决所有的图像分割问题。因此,将SAM应用于医学图像分割具有重要意义,其泛化性能够适应多种医学图像,为医生提供更全面的解剖结构和病变信息。介绍了图像分割常用的数据集;对SAM的网络结构和泛化性进行细致阐述;重点对SAM应用在全切片成像、磁共振成像、计算机断层扫描、超声和多模态图像的五大类医学图像进行梳理分析,总结优缺点和相应的改进方法;结合当前医学图像分割领域中存在的实际问题,讨论并展望了SAM未来的发展方向。
    参考文献 | 相关文章 | 多维度评价
    34. 基于事件相机的目标检测算法研究
    张亚丽, 田启川, 唐超林
    计算机工程与应用    2024, 60 (13): 23-35.   DOI: 10.3778/j.issn.1002-8331.2312-0322
    摘要159)      PDF(pc) (5613KB)(225)    收藏
    事件相机是模仿生物视网膜的成像方式,具有高动态、低延迟、高时间分辨率以及低功耗的特性。其突破传统相机难以捕捉在高动态范围情况下的物体并进行目标识别的困境,事件相机的特性对于研究基于事件相机的目标检测问题具有实验意义。简要叙述事件相机的现状、发展过程、优势与挑战,介绍了各种类型事件相机的工作原理和一些基于事件相机的目标检测算法,阐述了基于事件相机的目标检测算法面对的挑战和未来趋势,并进行了总结。
    参考文献 | 相关文章 | 多维度评价
    35. 太赫兹图像超分辨率重建方法的研究进展
    蒋玉英, 江梦蝶, 葛宏义, 张元, 李广明, 陈心雨, 温茜茜, 陈浩
    计算机工程与应用    2024, 60 (18): 1-16.   DOI: 10.3778/j.issn.1002-8331.2401-0161
    摘要175)      PDF(pc) (6043KB)(222)    收藏
    图像超分辨率是近几十年来图像处理领域的一个重要研究课题,旨在从低分辨率图像中重建出高分辨率图像,其突破了传感器和光学器件制造工艺和成本的限制,从算法方面提高图像分辨率,是一种简单、高效、低成本的方法。太赫兹(Terahertz,THz)图像受到THz波衍射和散射的影响,会产生图像模糊、纹理细节不清晰等问题,越来越多的学者致力于开发THz图像的超分辨率重建方法。根据近年来THz技术与超分辨率重建技术相关文献的研究,对THz图像的三大重建方法进行了详细阐述,重点对基于深度学习的方法进行介绍,并对比了各类算法的重建效果与优缺点;回顾了THz图像质量评价指标和常用数据集,并总结THz图像超分辨率重建技术的相关应用。最后,探讨了THz图像超分辨率重建技术的未来发展趋势。
    参考文献 | 相关文章 | 多维度评价
    36. 无人机集群弹性评估及重构技术研究
    韦宸越, 何明, 韩伟, 徐昕, 高宏
    计算机工程与应用    2024, 60 (15): 1-10.   DOI: 10.3778/j.issn.1002-8331.2401-0452
    摘要174)      PDF(pc) (4418KB)(221)    收藏
    无人机集群在实际应用中常受地形地貌、风雪雨雾、防空打击等扰动因素影响,导致集群性能下降、任务完成能力降低。为有效评估和提升集群抗扰能力,从无人机集群弹性评估指标和弹性重构方法两方面展开深入研究。梳理分析无人机集群弹性评估指标研究现状;从预测性重构和抗扰动重构两方面对无人机集群弹性重构方法进行了研究总结;针对评估指标不全面及多任务、多扰动情况下集群无法自适应重构问题,分别提出多维弹性评估指标和无人机集群相变重构方法,进一步考虑了覆盖率、能耗等因素对集群性能的影响,实现了不同任务类型和扰动种类自适应相变,大幅提升了集群应对扰动能力。最后,总结展望无人机集群弹性重构未来发展趋势。
    参考文献 | 相关文章 | 多维度评价
    37. 医学图像分割的无监督域适应研究综述
    呼伟, 徐巧枝, 葛湘巍, 于磊
    计算机工程与应用    2024, 60 (6): 10-26.   DOI: 10.3778/j.issn.1002-8331.2307-0421
    摘要242)      PDF(pc) (756KB)(219)    收藏
    医学图像分割在医学图像处理领域中具有广泛的应用前景,通过定位和分割出感兴趣的器官、组织或病变区域,为诊断和治疗提供辅助信息。但不同模态医学图像之间存在域偏移问题,这会导致在实际部署时分割模型的性能大幅下降。域适应技术是解决该问题的有效途径,尤其是无监督域适应,因其不需要目标域标签信息而成为医学图像处理领域的研究热点。目前,针对医学图像分割的无监督域适应研究的综述报告相对较少,对近年医学图像分割的无监督域适应的相关研究进行了整理、分析和总结,并对未来进行了展望,希望帮助相关研究人员快速了解并熟悉该领域的研究现状及趋势。
    参考文献 | 相关文章 | 多维度评价
    38. 基于U-Net变体的医学图像分割算法综述
    崔珂, 田启川, 廉露
    计算机工程与应用    2024, 60 (11): 32-49.   DOI: 10.3778/j.issn.1002-8331.2310-0335
    摘要151)      PDF(pc) (6802KB)(218)    收藏
    U-Net简单高效的网络结构,被广泛应用于医学图像分割任务中,学者们针对U-Net结构进行了很多的研究和改进。基于U-Net网络结构的改进方法从以下方面进行归纳总结:总结了U-Net网络在医学图像分割领域的关键挑战;归纳了常用于U-Net网络的医学图像数据集格式及特点;重点总结U-Net和U-Net变体算法六大改进机制:跳跃连接机制、生成对抗网络、残差连接机制、3D-UNet、Transformer机制、密集连接机制。最后,探讨六大改进机制与常用医学数据之间的关系,并指出未来改进思路和方向,激发U-Net在医学图像分割的无限潜力。
    参考文献 | 相关文章 | 多维度评价
    39. 基于深度学习的视线估计方法综述
    温铭淇, 任路乾, 陈镇钦, 杨卓, 战荫伟
    计算机工程与应用    2024, 60 (12): 18-33.   DOI: 10.3778/j.issn.1002-8331.2309-0497
    摘要141)      PDF(pc) (6991KB)(216)    收藏
    视线估计是一种预测人眼注视位置或注视方向的技术,在人机交互和计算机视觉的应用中发挥重要作用。近几年,深度学习的飞速发展改变了许多计算机视觉任务,利用深度学习进行基于外观的视线估计已成为关注热点。围绕深度学习模型的训练流程,从视线数据预处理、视线特征提取、视线学习策略、视线估计模型结构四个方面对近年基于深度学习的视线估计方法进行了综述和分析;然后介绍视线估计领域主流公开数据集,并对常用数据集分别进行2D和3D视线估计方法的对比分析。最后,探讨了当前视线估计领域的研究难点与挑战,并对未来的发展趋势进行总结与展望。
    参考文献 | 相关文章 | 多维度评价
    40. 改进YOLOv5的无人机航拍图像密集小目标检测算法
    陈佳慧, 王晓虹
    计算机工程与应用    2024, 60 (3): 100-108.   DOI: 10.3778/j.issn.1002-8331.2306-0289
    摘要188)      PDF(pc) (739KB)(215)    收藏
    无人机航拍图像中小目标实例多、尺寸变化剧烈且存在密集遮挡等问题,为解决现有目标检测算法难以检测到航拍图像中的小目标物体,提出了一种针对密集小目标的RDS-YOLOv5检测算法。在YOLOv5的三个检测层上新增一个小目标检测层,以保留更丰富的特征信息,增强网络对小目标特征的提取能力,并改善误检漏检情况;为了提高网络的多尺度特征表征能力以及抑制冲突的产生,设计了具有等级制的残差结构的多尺度特征提取模块C3Res2Block;使用解耦检测头Decoupled Head避免不同任务之间的差异所带来的预测偏差,提升了模型的定位精度和检测精度;采用软化非极大值抑制Soft NMS算法对候选框的置信度进行优化,提高模型对密集小目标的检测精度。通过VisDrone数据集的实验结果表明,与基准模型YOLOv5相比,RDS-YOLOv5在mAP0.5上提升了12.9个百分点,mAP0.5:0.95上提升了10.6个百分点,与目前主流的目标检测算法相比也取得更优的检测精度,能够有效完成无人机航拍图像的密集小目标检测任务。
    参考文献 | 相关文章 | 多维度评价