[1] GHAHREMANNEZHAD H, SHI H, LIU C. Object detection in traffic videos: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 6780-6799.
[2] WANG Y, YANG G, GUO J. Vehicle detection in surveillance videos based on YOLOv5 lightweight network[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2022: 143644.
[3] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[4] 宋建辉, 王思宇, 刘砚菊, 等.基于改进FFRCNN网络的无人机地面小目标检测算法[J].电光与控制, 2022, 29(7): 69-73.
SONG J H, WANG S Y, LIU Y J, et al. Ground small target detection algorithm of UAV based on improved FFRCNN network[J]. Electronics Optics & Control, 2022, 29(7): 69-73.
[5] 李松江, 吴宁, 王鹏, 等.基于改进Cascade RCNN的车辆目标检测方法[J].计算机工程与用, 2021, 57(5): 123-130.
LI S J, WU N, WANG P, et al. Vehicle target detection method based on improved cascade RCNN[J]. Computer Engineering and Applications, 2021, 57(5): 123-130.
[6] 谢光达, 李洋, 曲洪权, 等.基于改进Transformer的小目标车辆精确检测算法[J].激光与光电子学进展, 2022, 59(18): 354-361.
XIE G D, LI Y, QU H Q, et al. Small target accurate vehicle detection algorithm based on improved transformer[J]. Laser & Optoelectronics Progress, 2022, 59(18): 354-361.
[7] SONG Y, HONG S, HU C, et al. MEB-YOLO: an efficient vehicle detection method in complex traffic road scenes[J]. Computers, Materials & Continua, 2023, 75(3): 5761-5784.
[8] 郭宇阳, 胡伟超, 戴帅, 等.面向路侧交通监控场景的轻量车辆检测模型[J].计算机工程与应用, 2022, 58(6): 192-199.
GUO Y Y, HU W C, DAI S, et al. Lightweight vehicle detection model for roadside traffic monitoring scenarios[J]. Computer Engineering and Applications, 2022, 58(6): 192-199.
[9] HUANG Z, WANG J, FU X, et al. DC-SPP-YOLO: dense connection and spatial pyramid pooling based YOLO for object detection[J]. Information Sciences, 2020, 522: 241-258.
[10] ZHANG D, ZHENG Z, LI M, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[11] ZHANG D, ZHENG Z, WANG T, et al. HROM: learning high-resolution representation and object-aware masks for visual object tracking[J]. Sensors, 2020, 20(17): 4807.
[12] ZONG Z, SONG G, LIU Y. Detrs with collaborative hybrid assignments training[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6748-6758.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[14] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[15] HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[16] 张寅, 朱桂熠, 施天俊, 等.基于特征融合与注意力的遥感图像小目标检测[J].光学学报, 2022, 42(24): 140-150.
ZHANG Y, ZHU G Y, SHI T J, et al. Small object detection in remote sensing images based on feature fusion and attention[J]. Acta Optica Sinica, 2022, 42(24): 140-150.
[17] YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning, 2021: 11863-11874.
[18] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[19] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[20] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[21] WEN L, DU D, CAI Z, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907.
[22] HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[23] CHEN H, WANG Y, GUO J, et al. VanillaNet: the power of minimalism in deep learning[J]. arXiv:2305.12972, 2023.
[24] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning, 2019: 6105-6114.
[25] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[27] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5.
[28] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[29] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 3139-3148.
[30] LI X, HU X, YANG J. Spatial group-wise enhance: improving semantic feature learning in convolutional networks[J]. arXiv:1905.09646, 2019.
[31] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015.
[32] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[33] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[34] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4):1922-1933.
[35] ZHOU X, WANG D, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[36] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229. |