[1] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, the Netherlands, 2016: 21-37.
[2] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779-788.
[4] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[5] FARHADI A, REDMON J. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[7] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154-6162.
[8] LUO Q, WANG J, GAO M, et al. G-YOLOX: a lightweight network for detecting vehicle types[J]. Journal of Sensors, 2022, 2022(3): 1-10.
[9] LI Y, WANG J, HUANG J, et al. Research on deep learning automatic vehicle recognition algorithm based on RES-YOLO model[J]. Sensors, 2022, 22(10): 3783.
[10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.
[11] DONG X, YAN S, DUAN C. A lightweight vehicles detection network model based on YOLOv5[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104914.
[12] GOMAA A, MINEMATSU T, ABDELWAHAB M M, et al. Faster CNN-based vehicle detection and counting strategy for fixed camera scenes[J]. Multimedia Tools and Applications, 2022, 81(18): 25443-25471.
[13] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[14] YU H, LUO Y, SHU M, et al. DAIR-V2X: a large-scale dataset for vehicle-infrastructure cooperative 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 21361-21370.
[15] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[16] CUI C, GAO T, WEI S, et al. PP-LCNet: a lightweight CPU convolutional neural network[J]. arXiv:2109.15099, 2021.
[17] YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning Research, 2021: 11863-11874.
[18] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464-7475. |