[1] 徐坚, 谢正光, 李洪均. 特征平衡的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 196-203.
XU J, XIE Z, LI H J. Feature-balanced UAV aerial image target detection algorithm[J].Computer Engineering and Applications, 2023, 59(6): 196-203.
[2] 马峻, 姚震, 徐翠锋, 等.基于改进PP-YOLO和Deep-SORT的多无人机实时跟踪算法[J].计算机应用, 2022, 42(9): 2885-2892.
MA J, YAO Z, XU C F, et al. Real-time multi-drone tracking algorithm based on improved PP-YOLO and Deep-SORT[J]. Journal of Computer Applications, 2022, 42(9): 2885-2892.
[3] CAO X, XU J, ZHANG R. Mobile edge computing for cellular-connected UAV: computation offloading and trajectory optimization[C]//Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications, 2018: 1-5.
[4] 张伟, 庄幸涛, 王雪力, 等.DS-YOLO: 一种部署在无人机终端上的小目标实时检测算法[J].南京邮电大学学报 (自然科学版), 2021, 41(1): 86-98.
ZHANG W, ZHUANG X T, WANG X L, et al. DS-YOLO: a real-time small object detection algorithm on UAVs[J].Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2021, 41(1): 86-98.
[5] 孙伟, 潘森, 黄恒.基于改进YOLOv4模型的无人机目标检测算法[J].传感技术学报, 2023, 36(3): 456-461.
SUN W, PAN S, HUANG H. UAV target detection algorithm based on improved YOLOv4 model[J]. Chinese Journal of Sensors and Actuators, 2023, 36(3): 456-461.
[6] 侯鑫, 曲国远, 魏大洲, 等.基于迭代稀疏训练的轻量化无人机目标检测算法[J].计算机研究与发展, 2022, 59(4): 882-893.
HOU X, QU G Y, WEI D Z, et al. A lightweight UAV object detection algorithm based on iterative sparse[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893.
[7] 张红民, 庄旭, 郑敬添, 等. 优化YOLO网络的人体异常行为检测方法[J]. 计算机工程与应用, 2023, 59(7): 242-249.
ZHANG H M, ZHUANG X, ZHENG J T, et al.Optimizing human abnormal behavior detection method of YOLO network[J]. Computer Engineering and Applications, 2023, 59(7): 242-249.
[8] 陈范凯, 李士心. 改进Yolov5的无人机目标检测算法[J]. 计算机工程与应用, 2023, 59(18): 218-225.
CHEN F K, LI S X. UAV target detection algorithm with improved Yolov5[J]. Computer Engineering and Applications, 2023, 59(18): 218-225.
[9] YU W, YANG T, CHEN C. Towards resolving the challenge of long-tail distribution in UAV images for object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 3258-3267.
[10] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677.
[11] 王殿伟, 胡里晨, 房杰, 等.基于改进Double-Head RCNN的无人机航拍图像小目标检测算法[J/OL].北京航空航天大学学报: 1-10[2023-01-13].https://doi/10.13700/j.bh.1001-5965.2022.0591.
WANG D W, HU L, FANG J, et al. Small object detection algorithm based on improved Double-Head RCNN for UAV aerial images[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-10[2023-01-13].https://doi/10.13700/j.bh.1001-5965.2022.0591.
[12] 白宗宝, 张俊举, 高原, 等.基于注意力机制的航拍图像目标检测算法[J].激光与光电子学进展, 2023, 60(12): 312-322.
BAI Z B, ZHANG J J, GAO Y, et al. Attention mechanism-based object detection algorithm in aerial images[J]. Laser & Optoelectronics Progress, 2023, 60(12): 312-322.
[13] WANG F, WANG H, QIN Z, et al. UAV target detection algorithm based on improved YOLOv8[J].IEEE Access, 2023, 11: 116534-116544.
[14] LI Y, FAN Q, HUANG H, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[15] WANG G, CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[16] TAN J, WANG C, LI B, et al. Equalization loss for long-tailed object recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 662-671.
[17] SHU J, XIE Q, YI L, et al. Meta-Weight-Net: learning an explicit mapping for sample weighting[C]//Advances in Neural Information Processing Systems, 2019.
[18] WANG J, ZHANG W, ZANG Y, et al. Seesaw loss for long-tailed instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9695-9704.
[19] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21-31.
[20] TAN M, PANG R, LE Q V. Efficientnet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 781-790.
[21] ZAKI S Z, ZULKIFLEY M A, STOFA M M, et al. Classification of tomato leaf diseases using MobileNet v2[J]. IAES International Journal of Artificial Intelligence, 2020, 9(2): 290-296.
[22] MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision, 2018: 122-138.
[23] GONG Y, YU X, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 1160-1168.
[24] ZHANG T, ZHANG X, KE X. Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[26] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 213-226.
[27] LI B, YAO Y, TAN J, et al. Equalized focal loss for dense long-tailed object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6990-6999.
[28] AKYON F C, ALTINUC S O, TEMIZELl A. Slicing aided hyper inference and fine-tuning for small object detection[C]//Proceedings of the 2022 IEEE International Conference on Image Processing, 2022: 966-970.
[29] BOTEV ZI, KROESE DP, RUBINSTEIN RY, et al. The cross-entropy method for optimization[J].Handbook of Statistics, 2013, 31: 35-59.
[30] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[31] ZHANG H, WANG Y, DAYOUB F, et al. Varifocalnet: an IoU-aware dense object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523.
[32] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[33] LONG X, DENG K, WANG G, et al. PP-YOLO: an effective and efficient implementation of object detector[J]. arXiv:2007.12099, 2020.
[34] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[35] JOCHER G, CHAURASIA A, STOKEN A, et al. Ultralytics/YOLOv5: v6.2-YOLOv5 classification models, Apple M1, reproducibility, ClearML and deci.ai integrations[EB/OL]. Zenodo (2022-08-17). https://zenodo.org/record/7002879.
[36] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. |