
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (4): 72-89.DOI: 10.3778/j.issn.1002-8331.2408-0098
董甲东,郭庆虎,陈琳,桑飞虎
出版日期:2025-02-15
发布日期:2025-02-14
DONG Jiadong, GUO Qinghu, CHEN Lin, SANG Feihu
Online:2025-02-15
Published:2025-02-14
摘要: 金属表面的划痕、凹坑、波纹等缺陷会直接影响产品的质量。传统的检测方法耗时耗力,准确性受限于操作人员的经验和技能。近年来,深度学习技术在图像识别领域的突破性进展为金属表面缺陷检测提供了新的解决方案,基于深度学习的金属表面缺陷检测方法在检测精度和速度方面取得了显著成效。为了便于金属表面缺陷检测算法的研究,综合分析了单阶段深度学习算法在金属表面缺陷检测中的优化方法及应用。介绍了目前常用的金属表面缺陷数据集和算法评价指标;总结了目标检测算法的发展史以及单阶段目标检测算法的基本概念和典型模型;从数据增强、特征的提取与融合、锚框优化三个方面,对比总结了不同算法不同优化方式的优缺点,并研究了金属表面缺陷检测算法的轻量化;从多模态融合、大数据应用技术、现实与虚拟结合三个方面对金属表面缺陷检测算法的未来研究方向进行了展望。
董甲东, 郭庆虎, 陈琳, 桑飞虎. 深度学习中单阶段金属表面缺陷检测算法优化综述[J]. 计算机工程与应用, 2025, 61(4): 72-89.
DONG Jiadong, GUO Qinghu, CHEN Lin, SANG Feihu. Review on Optimization Algorithms for One-Stage Metal Surface Defect Detection in Deep Learning[J]. Computer Engineering and Applications, 2025, 61(4): 72-89.
| [1] AMERI R, HSU C C, BAND S S. A systematic review of deep learning approaches for surface defect detection in industrial applications[J]. Engineering Applications of Artificial Intelligence, 2024, 130: 107717. [2] LING L, SHENG Y, TU Z, et al. DL3DV-10K: a large-scale scene dataset for deep learning-based 3D vision[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 22160-22169. [3] YANG X, WEN G, MEI S, et al. DBHF: a double fusion backbone and bidirectional feature hybrid fusion detector for high-precision inspection of avionics solder joint defects[J]. Measurement, 2024, 237: 115221. [4] ZHENG Q, TIAN X, YU Z, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596. [5] ZHENG Q, SAPONARA S, TIAN X, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671. [6] 伍麟, 郝鸿宇, 宋友. 基于计算机视觉的工业金属表面缺陷检测综述[J]. 自动化学报, 2024, 50(7): 1261-1283. WU L, HAO H Y, SONG Y. A review of metal surface defect detection based on computer vision[J]. Acta Automatica Sinica, 2024, 50(7): 1261-1283. [7] 李宗祐, 高春艳, 吕晓玲, 等. 基于深度学习的金属材料表面缺陷检测综述[J]. 制造技术与机床, 2023(6): 61-67. LI Z Y, GAO C Y, LV X L, et al. A review of surface defect detection for metal materials based on deep learning[J]. Manufacturing Technology & Machine Tool, 2023(6): 61-67. [8] 王慧菁, 杨长辉, 吕庆. 基于机器视觉的金属表面缺陷检测方法综述[J]. 微纳电子与智能制造, 2022, 4(4): 71-81. WANG H J, YANG C H, LYU Q. Review of metal surface defect detection methods based on machine vision[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2022, 4(4): 71-81. [9] 费佳杰, 李宏胜, 任飞, 等. 基于深度学习的钢表面缺陷检测方法综述[J]. 现代信息科技, 2023, 7(19): 107-112. FEI J J, LI H S, REN F, et al. Overview of steel surface defect detection methods based on deep learning[J]. Modern Information Technology, 2023, 7(19): 107-112. [10] EVERINGHAM M, ALI ESLAMI S M, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. [11] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. [12] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. [13] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: a benchmark[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 304-311. [14] YANG S, LUO P, LOY C C, et al. Wider Face: a face detection benchmark[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5525-5533. [15] 徐洪俊, 唐自强, 张锦东, 等. 钢材表面缺陷检测的YOLOv5s算法优化研究[J]. 计算机工程与应用, 2024, 60(7): 306-314. XU H J, TANG Z Q, ZHANG J D, et al. Research on optimization of YOLOv5s detection algorithm for steel surface defect[J]. Computer Engineering and Applications, 2024, 60(7): 306-314. [16] XU J, HU X, ZHANG Y, et al. BHE-YOLO: effective small target detector for aluminum surface defect detection[J]. Advanced Theory and Simulations, 2024, 7(1): 2300563. [17] 苏佳, 贾泽, 秦一畅, 等. 面向工业表面缺陷检测的改进YOLOv8算法[J]. 计算机工程与应用, 2024, 60(14): 187-196. SU J, JIA Z, QIN Y C, et al. Improved YOLOv8 algorithm for industrial surface defect detection[J]. Computer Engineering and Applications, 2024, 60(14): 187-196. [18] GAN J, LI Q, WANG J, et al. A hierarchical extractor-based visual rail surface inspection system[J]. IEEE Sensors Journal, 2017, 17(23): 7935-7944. [19] JI T, ZHAO Q, AN K, et al. A real-time PCB defect detection model based on enhanced semantic information fusion[J]. Signal, Image and Video Processing, 2024, 18(6): 4945-4959. [20] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. [21] BOMBARA G, VASILE C I, PENEDO F, et al. A decision tree approach to data classification using signal temporal logic[C]//Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control. New York: ACM, 2016: 1-10. [22] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. [23] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001. [24] LINDEBERG T. Scale invariant feature transform[J]. Scholarpedia, 2012, 7(5): 10491. [25] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. [26] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2006: 404-417. [27] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [28] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [29] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. [30] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [31] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [32] LU X, LI B Y, YUE Y X, et al. Grid R-CNN[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7355-7364. [33] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [34] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. [35] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [36] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. [37] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020. [38] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. [39] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022. [40] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. [41] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024. [42] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. [43] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017. [44] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. [45] WU B, WAN A, IANDOLA F, et al. SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 446-454. [46] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[J]. arXiv:1904.01355, 2019. [47] DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6568-6577. [48] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. [49] LIANG J, KONG R, MA R, et al. Aluminum surface defect detection algorithm based on improved YOLOv5[J]. Advanced Theory and Simulations, 2024, 7(2): 2300695. [50] XIAO D, XIE F T, GAO Y, et al. A detection method of spangle defects on zinc-coated steel surfaces based on improved YOLO-v5[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(1/2): 937-951. [51] CHEN F, DENG M, GAO H, et al. NHD-YOLO: improved YOLOv8 using optimized neck and head for product surface defect detection with data augmentation[J]. IET Image Processing, 2024, 18(7): 1915-1926. [52] CHENG Y, WANG S. Improvements to YOLOv4 for steel surface defect detection[C]//Proceedings of the 2022 5th International Conference on Intelligent Autonomous Systems. Piscataway: IEEE, 2022: 48-53. [53] REN F, FEI J, LI H, et al. Steel surface defect detection using improved deep learning algorithm: ECA-SimSPPF-SIoU-Yolov5[J]. IEEE Access, 2024, 12: 32545-32553. [54] YU J, SHI X, WANG W, et al. LCG-YOLO: a real-time surface defect detection method for metal components[J]. IEEE Access, 2024, 12: 41436-41451. [55] JIA H, ZHOU H, CHEN Z, et al. Research on bearing surface scratch detection based on improved YOLOv5[J]. Sensors, 2024, 24(10): 3002. [56] ZHANG H, MIAO Q, LI S, et al. An efficient and real-time steel surface defect detection method based on single-stage detection algorithm[J]. Multimedia Tools and Applications, 2024. DOI:10.1007/s11042-024-19565-2. [57] 朱德平, 程光, 姚景丽. 改进YOLOv5的汽车齿轮配件表面缺陷检测[J]. 计算机工程与应用, 2024, 60(5): 321-327. ZHU D P, CHENG G, YAO J L. Improved YOLOv5 model for surface defect detection of automotive gear components[J]. Computer Engineering and Applications, 2024, 60(5): 321-327. [58] LI C, XU A, ZHANG Q, et al. Steel surface defect detection method based on improved YOLOX[J]. IEEE Access, 2024, 12: 37643-37652. [59] 李思雨. 基于改进Yolov5的铝型材表面缺陷检测方法研究[D]. 西安: 西安理工大学, 2023. LI S Y. Research on surface defect detection method of aluminum profile based on improved Yolov5[D]. Xi’an: Xi’an University of Technology, 2023. [60] ZHAO C, SHU X, YAN X, et al. RDD-YOLO: a modified YOLO for detection of steel surface defects[J]. Measurement, 2023, 214: 112776. [61] 高春艳, 秦燊, 李满宏, 等. 改进YOLOv7算法的钢材表面缺陷检测研究[J]. 计算机工程与应用, 2024, 60(7): 282-291. GAO C Y, QIN S, LI M H, et al. Research on steel surface defect detection with improved YOLOv7 algorithm[J]. Computer Engineering and Applications, 2024, 60(7): 282-291. [62] 赵泽民. 基于改进YOLOv6的轧钢表面细小缺陷检测研究与应用[D]. 太原: 中北大学, 2023. ZHAO Z M. Research and application of small defects detection on steel rolling surface based on improved YOLOv6[D]. Taiyuan: North University of China, 2023. [63] LU M, SHENG W, ZOU Y, et al. WSS-YOLO: an improved industrial defect detection network for steel surface defects[J]. Measurement, 2024, 236: 115060. [64] CHEN S, ZHOU F, GAO G, et al. Unleashing the power of AI in detecting metal surface defects: an optimized YOLOv7-tiny model approach[J]. PeerJ Computer Science, 2024, 10: e1727. [65] 刘浩翰, 孙铖, 贺怀清, 等. 基于改进YOLOv3的金属表面缺陷检测[J]. 计算机工程与科学, 2023, 45(7): 1226-1235. LIU H H, SUN C, HE H Q, et al. Metal surface defect detection based on improved YOLOv3[J]. Computer Engineering & Science, 2023, 45(7): 1226-1235. [66] XIAN Y, YU Y, LIAN Y, et al. An EA-based pruning on improved YOLOv3 for rapid copper elbow surface defect detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106412. [67] 陈明文. 基于深度学习的金属表面缺陷检测方法研究与实现[D]. 大庆: 东北石油大学, 2023. CHEN M W. Research and implementation of metal surface defect detection method based on deep learning[D]. Daqing: Northeast Petroleum University, 2023. [68] MI Z, CHEN R, ZHAO S. Research on steel rail surface defects detection based on improved YOLOv4 network[J]. Frontiers in Neurorobotics, 2023, 17: 1119896. [69] SUN S, DENG M, LUO J, et al. ST-YOLO: an improved metal defect detection model based on Yolov5[C]//Proceedings of the 2024 3rd Asia Conference on Algorithms, Computing and Machine Learning. New York: ACM, 2024: 158-164. [70] ZHU H, JIANG J, WANG Y. CGS-YOLOv5: a defect detection algorithm for PCB board based on YOLOv5 algorithm[C]//Proceedings of the 2nd International Conference on Physics, Photonics, and Optical Engineering. Bellingham: SPIE, 2024: 320-329. [71] ZHU X, LIU J, ZHOU X, et al. Enhanced feature fusion structure of YOLOv5 for detecting small defects on metal surfaces[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(6): 2041-2051. [72] WANG L, LIU X, MA J, et al. Real-time steel surface defect detection with improved multi-scale YOLO-v5[J]. Processes, 2023, 11(5): 1357. [73] 杜少聪, 张红钢, 王小敏. 基于改进YOLOv5的钢轨表面缺陷检测[J]. 北京交通大学学报, 2023, 47(2): 129-136. DU S C, ZHANG H G, WANG X M. Rail surface defect detection based on improved YOLOv5[J]. Journal of Beijing Jiaotong University, 2023, 47(2): 129-136. [74] ZHANG H, LI S, MIAO Q, et al. Surface defect detection of hot rolled steel based on multi-scale feature fusion and attention mechanism residual block[J]. Scientific Reports, 2024, 14(1): 7671. [75] 齐向明, 董旭. 改进Yolov7-tiny的钢材表面缺陷检测算法[J]. 计算机工程与应用, 2023, 59(12): 176-183. QI X M, DONG X. Improved Yolov7-tiny algorithm for steel surface defect detection[J]. Computer Engineering and Applications, 2023, 59(12): 176-183. [76] 窦智, 胡晨光, 李庆华, 等. 改进YOLOv7的小样本钢板表面缺陷检测算法[J]. 计算机工程与应用, 2023, 59(23): 283-292. DOU Z, HU C G, LI Q H, et al. Improved YOLOv7 algorithm for small sample steel plate surface defect detection[J]. Computer Engineering and Applications, 2023, 59(23): 283-292. [77] ZHONG H, FU D, XIAO L, et al. STFE-Net: a multi-stage approach to enhance statistical texture feature for defect detection on metal surfaces[J]. Advanced Engineering Informatics, 2024, 61: 102437. [78] YOU C, KONG H. Improved steel surface defect detection algorithm based on YOLOv8[J]. IEEE Access, 2024, 12: 99570-99577. [79] FAN J, WANG M, LI B, et al. ACD‐YOLO: improved YOLOv5‐based method for steel surface defects detection[J]. IET Image Processing, 2024, 18(3): 761-771. [80] 胡欣, 周运强, 肖剑, 等. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437. HU X, ZHOU Y Q, XIAO J, et al. Surface defect detection of threaded steel based on improved YOLOv5[J]. Journal of Graphics, 2023, 44(3): 427-437. [81] LIU Z, YE K. YOLO-IMF: an improved YOLOv8 algorithm for surface defect detection in industrial manufacturing field[C]//Proceedings of the 19th?International Conference on Metaverse. Cham: Springer, 2023: 15-28. [82] KONG X, FAN W. Surface defect detection of steel strips based on an improved YOLOv8[C]//Proceedings of the 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology. Piscataway: IEEE, 2024: 2325-2328. [83] 刘艳菊, 王秋霁, 张惠玉, 等. 基于改进SSD的工件表面缺陷检测[J]. 热加工工艺, 2024, 53(2): 134-139. LIU Y J, WANG Q J, ZHANG H Y, et al. Defect detection of workpiece surface based on improved SSD[J]. Hot Working Technology, 2024, 53(2): 134-139. [84] LIU X, GAO J. Surface defect detection method of hot-rolled steel strip based on improved SSD model[J]. EasyChair, 2020, 4681: 1-11. [85] LI Y, HE L, ZHANG M, et al. Improving the performance of the single shot multibox detector for steel surface defects with context fusion and feature refinement[J]. Electronics, 2023, 12(11): 2440. [86] CUI L, JIANG X, XU M, et al. SDDNet: a fast and accurate network for surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2505713. [87] 阎馨, 杨月川, 屠乃威. 基于改进SSD的钢材表面缺陷检测[J]. 现代制造工程, 2023(5): 112-120. YAN X, YANG Y C, TU N W. Steel surface defect detection based on improved SSD[J]. Modern Manufacturing Engineering, 2023(5): 112-120. [88] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017. [89] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. [90] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. [91] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. [92] MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 122-138. [93] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. [94] XIE Y, HU W, XIE S, et al. Surface defect detection algorithm based on feature-enhanced YOLO[J]. Cognitive Computation, 2023, 15(2): 565-579. [95] 李丰润. 基于深度学习的金属表面缺陷检测的研究与实现[D]. 广州: 华南理工大学, 2023. LI F R. Research and implementation of metal surface defect detection based on deep learning[D]. Guangzhou: South China University of Technology, 2023. [96] WU Y, CHEN R, LI Z, et al. SDD-YOLO: a lightweight, high-generalization methodology for real-time detection of strip surface defects[J]. Metals, 2024, 14(6): 650. [97] LIU Z, LV H. YOLO_Bolt: a lightweight network model for bolt detection[J]. Scientific Reports, 2024, 14(1): 656. [98] ZHANG G, LIU S, NIE S, et al. YOLO-RDP: lightweight steel defect detection through improved YOLOv7-tiny and model pruning[J]. Symmetry, 2024, 16(4): 458. [99] 梁礼明, 龙鹏威, 冯耀, 等. 改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测[J]. 光学精密工程, 2024, 32(8): 1227-1240. LIANG L M, LONG P W, FENG Y, et al. Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection[J]. Optics and Precision Engineering, 2024, 32(8): 1227-1240. [100] 叶卓勋. 基于深度学习网络的金属小目标外观缺陷检测[D]. 杭州: 浙江大学, 2023. YE Z X. Appearance defect detection of small metal targets based on deep learning network[D]. Hangzhou: Zhejiang University, 2023. [101] 苏盈盈, 何亚平, 邓圆圆, 等. 基于改进YOLOv5s轻量化带钢表面缺陷检测方法[J]. 光电子·激光, 2024, 35(7): 723-730. SU Y Y, HE Y P, DENG Y Y, et al. Lightweight strip surface defect detection method based on improved YOLOv5s[J]. Journal of Optoelectronics·Laser, 2024, 35(7): 723-730. [102] 梁礼明, 龙鹏威, 卢宝贺, 等. 改进GBS-YOLOv7t的钢材表面缺陷检测[J]. 光电工程, 2024, 51(5): 61-73. LIANG L M, LONG P W, LU B H, et al. Improvement of GBS-YOLOv7t for steel surface defect detection[J]. Opto-Electronic Engineering, 2024, 51(5): 61-73. [103] 刘凤春, 张靖, 薛涛, 等. YOLO-VDCW: 一种新的轻量化带钢表面缺陷检测算法[J]. 中国冶金, 2024, 34(6): 125-135. LIU F C, ZHANG J, XUE T, et al. YOLO-VDCW: a new lightweight surface defect detection algorithm for strip steel[J]. China Metallurgy, 2024, 34(6): 125-135. [104] 梁礼明, 龙鹏威, 卢宝贺, 等. EHH-YOLOv8s: 一种轻量级的带钢表面缺陷检测算法[J/OL]. 北京航空航天大学学报 (2024-08-08)[2024-09-15]. https://link.cnki.neturlid/11.2625.V.20240807.1403.003. LIANG L M, LONG P W, LU B H, et al. EHH-YOLOv8s: a lightweight algorithm for strip surface defect detection[J/OL]. Journal of Beijing University of Aeronautics and Astronautics (2024-08-08)[2024-09-15]. https://link.cnki.net/urlid/11.2625.V.20240807.1403.003. [105] LU J, YU M, LIU J. Lightweight strip steel defect detection algorithm based on improved YOLOv7[J]. Scientific Reports, 2024, 14(1): 13267. [106] YUAN Z, NING H, TANG X, et al. GDCP-YOLO: enhancing steel surface defect detection using lightweight machine learning approach[J]. Electronics, 2024, 13(7): 1388. [107] CHEN B, WEI M, LIU J, et al. EFS-YOLO: a lightweight network based on steel strip surface defect detection[J]. Measurement Science and Technology, 2024, 35(11): 116003. [108] XIE W, SUN X, MA W. A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8[J]. Measurement Science and Technology, 2024, 35(5): 055017. [109] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160. WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160. [110] LIU X, GAO J. Surface defect detection method of hot rolling strip based on improved SSD model[C]//Proceedings of the 2021 International Workshops on Database Systems for Advanced Applications. Cham: Springer, 2021: 209-222. [111] 刘凡凡, 朱成梅, 赵娜娜, 等. 基于多模态融合的遥感小目标检测[J]. 激光与光电子学进展, 2024, 61(24): 10. LIU F F, ZHU C M, ZHAO N N, et al. Remote sensing small target detection based on multi-modal fusion[J]. Laser & Optoelectronics Progress, 2024, 61(24): 10. [112] SUN L, WANG J S, WANG J, et al. Efficient joint deployment of multi-UAVs for target tracking in traffic big data[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7780-7791. [113] PARK B, KIM Y, PARK J, et al. Integrating biomarkers from virtual reality and magnetic resonance imaging for the early detection of mild cognitive impairment using a multimodal learning approach: validation study[J]. Journal of Medical Internet Research, 2024, 26: e54538. |
| [1] | 洪书颖, 张东霖. 语义信息处理方式分类的车道线检测技术研究综述[J]. 计算机工程与应用, 2025, 61(5): 1-17. |
| [2] | 张建伟, 陈旭, 王叔洋, 景永俊, 宋吉飞. 时空图神经网络在物联网中的应用综述[J]. 计算机工程与应用, 2025, 61(5): 43-54. |
| [3] | 余城旭, 张宇来. 基于微调的深度学习后门防御研究[J]. 计算机工程与应用, 2025, 61(5): 155-164. |
| [4] | 李小童, 马素芬, 生慧, 魏国辉, 李欣桐. 基于深度学习的肺部CT图像病灶区域分割研究综述[J]. 计算机工程与应用, 2025, 61(4): 25-42. |
| [5] | 雷景生, 章志豪, 钱小鸿, 王巍然, 杨胜英. 改进YOLOX的轻量级多方向车牌检测算法[J]. 计算机工程与应用, 2025, 61(4): 230-240. |
| [6] | 张锴, 贾涛. 结合知识图谱和小目标改进的RCNN电力杆塔部件识别方法[J]. 计算机工程与应用, 2025, 61(4): 299-309. |
| [7] | 蒋悦晗, 陈俊杰, 李洪均. 基于骨骼图神经网络的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(3): 34-47. |
| [8] | 李泽慧, 张琳, 山显英. 三维卷积神经网络方法改进及其应用综述[J]. 计算机工程与应用, 2025, 61(3): 48-61. |
| [9] | 李志媛, 刘祎, 张鹏程, 张丽媛, 任时磊, 芦婧, 桂志国. AWTV和高斯注意力引导的LDCT图像去噪网络[J]. 计算机工程与应用, 2025, 61(3): 253-263. |
| [10] | 郝子强, 唐颖, 田芳, 张岩, 詹伟达. 轻量化的多尺度注意力脊柱侧弯筛查方法[J]. 计算机工程与应用, 2025, 61(3): 286-294. |
| [11] | 高腾达, 任兆亭, 孙铁军, 吴春雷, 王雷全. 多分支加权的Transformer霍克斯过程[J]. 计算机工程与应用, 2025, 61(2): 191-199. |
| [12] | 李润东, 曲英伟, 殷丽凤, 郑广海. YOLO-sea:改进YOLOv7-tiny的复杂海底目标检测算法研究[J]. 计算机工程与应用, 2025, 61(2): 247-258. |
| [13] | 梁嘉杰, 李星星. 特定任务上下文解耦的遥感图像目标检测方法[J]. 计算机工程与应用, 2025, 61(2): 293-303. |
| [14] | 袁瑞萍, 魏辉, 傅之家, 李俊韬. 融合CNN和WDF模型的电商企业商品销量预测研究[J]. 计算机工程与应用, 2025, 61(2): 335-343. |
| [15] | 杨晓文, 冯泊栋, 韩慧妍, 况立群, 韩燮, 何黎刚. 结合通道剪枝和通道注意力的轻量型车辆点云补全网络[J]. 计算机工程与应用, 2025, 61(1): 232-242. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||