[1] FANG J, ZHOU D F, YAN F L, et al. Augmented LiDAR simulator for autonomous driving[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1931-1938.
[2] CHEN C, XIANG H, QIU T, et al. A rearend collision prediction scheme based on deep learning in the Internet of vehicles[J]. Journal of Parallel and Distributed Computing, 2018, 117: 192-204.
[3] QI C R, SU H, MO K. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jul 21-26, 2017, Honolulu, HI, United States. New York: IEEE, 2017: 652-660.
[4] QI C R, SU H, MO K. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 2008 IEEE International Conference on Neural Information Processing Systems. Long Beach, CA, USA, 2017: 5105-5114.
[5] YUAN W T, KHOT T, HELD D, et al. PCN: point completion network[C]//Proceedings of the 2018 International Conference on 3D Vision, Sep 5-8, 2018, Verona, Italy. New York: IEEE, 2018: 728-737.
[6] YANG Y Q, FENG C, SHEN Y, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2021: 206-215.
[7] HUANG Z T, YU Y K, XU J W, et al. PF Net: point fractal network for 3D point cloud completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 7659-7667.
[8] WEN X, XIANG P, HAN Z Z, et al. PMP-Net: point cloud completion by learning multi-step point moving paths[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, Jun 20-25, 2021. New York: IEEE, 2021: 7439-7448.
[9] WEN X, XIANG P, HAN Z Z, et al. PMP-Net++: point cloud completion by transformer enhanced multistep point moving paths[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 852-867.
[10] ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 16239-16248.
[11] TANG J S, GONG Z J, YI R, et al. Lake-Net: topology-aware point cloud completion by localizing aligned keypoints[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 1716-1725.
[12] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3-19.
[13] TCHAPMI L P, KOSARAJU V, REZATOFIGHI H, et al. TopNet: structural point cloud decoder[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, United States, Jun 15-21, 2019. New York: IEEE, 2019: 383-392.
[14] DAI A, QI C R, NIE?NER M. Shape completion using 3D-encoder-predictor CNNs and shape synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, ?Honolulu, HI, USA, 2017: 6545-6554.
[15] STUTZ D, GEIGER A. Learning 3D shape completion from laser scan data with weak supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 1955-1964.
[16] XIE H Z, YAO H X, ZHOU S C, et al. GRNet: gridding residual network for dense point cloud completion[C]//Proceedings of the European Conference on Computer Vision, Glasgow, UK, Aug 23-28, 2020. Cham: Springer, 2020: 365-381.
[17] GROUEIX T, FISHER M, KIM V G, et al. A papier-maché approach to learning 3D surface generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 216-224.
[18] LITANY O, BRONSTEIN A, BRONSTEIN M, et al. Deformable shape completion with graph convolutional autoencoders[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 1886-1895.
[19] CHEN X, CHEN B, MITRA N J. Unpaired point cloud completion on real scans using adversarial training[C]//Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
[20] GURUMURTHY S, AGRAWAL S. High fidelity semantic shape completion for point clouds using latent optimization[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2019: 1099-1108.
[21] 李昂, 孙士杰, 张朝阳, 等. 改进YOLOv5s的轨道障碍物检测模型轻量化研究[J]. 计算机工程与应用, 2023, 59(4): 197-207.
LI A, SUN S J, ZHANG C Y, et al. Research on lightweight of improved YOLOv5s track obstacle detection model[J]. Computer Engineering and Applications, 2023, 59(4): 197-207.
[22] JIANG Y, WANG S, VALLS V, et al. Model pruning enables efficient federated learning on edge devices[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10374-10386.
[23] SINGH P, VERMA V K, RAI P, et al. Play and prune: adaptive filter pruning for deep model compression[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 3460-3466.
[24] XIA Y, WANH C, XU Y, et al. RealPoint3D: generating 3D point clouds from a single image of complex scenarios[J]. Remote Sensing, 2019, 11(22): 2644.
[25] FAN H Q, SU H, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, ?Honolulu, HI, USA, 2017: 2463-2471.
[26] TATARCHENKO M, RICHTER S R, RANFTL R, et al. What do single-view 3D reconstruction networks learn?[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, ?Long Beach, CA, USA, 2019: 3400-3409.
[27] XIANG P, WEN X, LIU Y S, et al. SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, ?Montreal, QC, Canada, 2021: 5479-5489.
[28] 邱云飞, 赵静, 方立. MF-Net: 结合残差网络的多尺度特征点云补全网络[J]. 计算机工程与应用, 2023, 59(22): 202-212.
QIU Y F, ZHAO J, FANG L. MF-Net: multi-scale feature point cloud completion network combined with residual network[J]. Computer Engineering and Applications, 2023, 59(22): 202-212.
[29] KLOKOV R, BOYER E, VERBEEK J. Discrete point flow networks for efficient point cloud generation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, Aug 23-28, 2020. Cham: Springer, 2020: 694-710.
[30] OUYANG Z C, CUI J H, DONG X Y, et al. SaccadeFork: a lightweight multi-sensor fusion-based target detector[J]. Information Fusion, 2022, 77: 172-183. |