[1] GHAFOOR H, NOH Y. An overview of next-generation underwater target detection and tracking: an integrated underwater architecture[J]. IEEE Access, 2019, 7: 98841-98853.
[2] LIU K, LIANG Y. Enhancement of underwater optical images based on background light estimation and improved adaptive transmission fusion[J]. Optics Express, 2021, 29(18): 28307-28328.
[3] ZHANG W, SUN W. Research on small moving target detection algorithm based on complex scene[J]. Journal of Physics: Conference Series, 2021, 1738: 12093.
[4] FU H, SONG G, WANG Y. Improved YOLOv4 marine target detection combined with CBAM[J]. Symmetry, 2021, 13(4): 623.
[5] SAMANTARAY S, DEOTALE R, CHOWDHARY C L. Lane detection using sliding window for intelligent ground vehicle challenge[C]//Proceedings of the Innovative Data Communication Technologies and Application, 2021: 871-881.
[6] BAKHEET S, AL-HAMADI A. A framework for instantaneous driver drowsiness detection based on improved HOG features and na?ve Bayesian classification[J]. Brain Sciences, 2021, 11(2): 240.
[7] BELLAVIA F. SIFT matching by context exposed[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022, 45: 2445-2457.
[8] KOKLU M, UNLERSEN M F, OZKAN I A, et al. A CNN-SVM study based on selected deep features for grapevine leaves classification[J]. Measurement, 2022, 188: 110425.
[9] SEVIN? E. An empowered AdaBoost algorithm implementation: a COVID-19 dataset study[J]. Computers & Industrial Engineering, 2022, 165: 107912.
[10] VILLON S, MOUILLOT D, CHAUMONT M, et al. A deep learning method for accurate and fast identification of coral reef fishes in underwater images[J]. Ecological Informatics, 2018, 48: 238-244.
[11] GUO X, ZHAO X, LIU Y, et al. Underwater sea cucumber identification via deep residual networks[J]. Information Processing in Agriculture, 2019, 6(3): 307-315.
[12] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1440-1448.
[13] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[14] LIU Y, WANG S. A quantitative detection algorithm based on improved faster R-CNN for marine benthos[J]. Ecological Informatics, 2021, 61: 101228.
[15] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[17] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[18] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[20] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[22] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[23] DAI L, LIU H, SONG P, et al. A gated cross-domain collaborative network for underwater object detection[J]. Pattern Recognition, 2024, 149: 110222.
[24] MUKSIT A A, HASAN F, EMON M F H B, et al. YOLO-Fish: a robust fish detection model to detect fish in realistic underwater environment[J]. Ecological Informatics, 2022, 72: 101847.
[25] LIU Z, WANG B, LI Y, et al. UnitModule: a light-weight joint image enhancement module for underwater object detection[J]. Pattern Recognition, 2024, 151: 110435.
[26] LEI F, TANG F, LI S. Underwater target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2022, 10(3): 310.
[27] LIU K, SUN Q, SUN D, et al. Underwater target detection based on improved YOLOv7[J]. Journal of Marine Science and Engineering, 2023, 11(3): 677.
[28] HAN Y L, CHEN L, LUO Y, et al. Underwater Holothurian target-detection algorithm based on improved CenterNet and scene feature fusion[J]. Sensors, 2022, 22: 7204.
[29] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022: 443-459.
[30] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[31] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[32] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[33] WANG C Y, LIAO H Y M, YE I H. Designing network design strategies through gradient path analysis[J]. arXiv:2211.04800, 2022.
[34] QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6070-6079.
[35] LIU C, LI H, WANG S, et al. A dataset and benchmark of underwater object detection for robot picking[C]//Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops, 2021: 1-6.
[36] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[37] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[38] 辛世澳, 葛海波, 袁昊, 等. 改进YOLOv7的轻量化水下目标检测算法[J]. 计算机工程与应用, 2024, 60(3), 88-99.
XIN S A, GE H B, YUAN H, et al. Improved YOLOv7’s lightweight underwater target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 88-99.
[39] 陶洋, 朱腾, 钟邦乾, 等. RepViTS-YOLOX: 水下模糊及遮挡目标检测方法[J]. 计算机工程与应用, 2024, 60(3): 200-208.
TAO Y, ZHU T, ZHONG B Q, et al. RepViTS-YOLOX: underwater blurred and occluded target detection method[J]. Computer Engineering and Applications, 2024, 60(3): 200-208. |