[1] BENJAMIN G, LUTZMANN P. Review on short-wavelength infrared laser gated-viewing at Fraunhofer IOSB[J]. Optical Engineering, 2017, 56(3): 031203.
[2] 王寿增, 孙峰, 张鑫. 激光照明距离选通成像技术研究进展[J]. 红外与激光工程, 2008, 37(3): 95-99.
WANG S Z, SUN F, ZHANG X. Development of laser illuminating range-gated imaging technique[J]. Infrared and Laser Engineering, 2008, 37(3): 95-99.
[3] 王书宇, 艾磊, 陶声祥, 等. 便携式远距离激光选通成像系统研究[J]. 兵器装备工程学报, 2018, 39(9): 166-170.
WANG S Y, AI L, TAO S X, et al. Research on portable long range laser range gated imaging system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 166-170.
[4] REN W Z, QIN H B, YIN Z J, et al. Design and implementation of portable rang-gated camera for seeing through the fire[C]//Proceedings of the 8th Symposium on Novel Photoelectronic Detection Technology and Applications, 2022: 1597-1601.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Richfeature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[7] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real- time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015: 91-99.
[9] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[10] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125. ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[14] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[15] JOCHER G, STOKEN A, BOROVEC J, et al. YOLOv5: V3.1-bug fixes and performance improvements[EB/OL]. (2020)[2024-01-12]. doi:10.5281/zenodo.4154370, 2020.
[16] 张艳, 孙晶雪, 孙叶美, 等. 基于分割注意力与线性变换的轻量化目标检测[J]. 浙江大学学报(工学版), 2023, 57(6): 1195-1204.
ZHANG Y, SUN J X, SUN Y M, et al. Lightweight object detection based on split attention and linear transformation[J]. Journal of Zhejiang University(Engineering Science), 2023, 57(6): 1195-1204.
[17] VARGHESE R,SAMBATH M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the 2024 International Conference on Data Engineering and Intelligent Computing Systems, 2024: 1-6.
[18] 张正, 白佳华, 田青. 基于单级特征金字塔的图像旋转目标检测[J]. 计算机工程与应用, 2023, 59(15): 235-242.
ZHANG Z, BAI J H, TIAN Q. Image rotating objects detection based on single level feature pyramid[J]. Computer Engineering and Applications, 2023, 59(15): 235-242.
[19] 卫策, 吕进, 曲晨阳. 改进YOLOv5s的复杂交通场景下目标检测算法[J]. 电子测量技术,2024, 47(2): 121-130.
WEI C, LV J, QU C Y. Improved object detection algorithm for complex traffic scenes in YOLOv5s[J]. Electronic Measurement Technology, 2024, 47(2): 121-130.
[20] 刘辉, 刘鑫满, 刘大东. 面向复杂道路目标检测的YOLOv5算法优化研究[J]. 计算机工程与应用, 2023, 59(18): 207-217.
LIU H, LIU X M, LIU D D. Research on optimization of YOLOv5 detection algorithm for object in complex road[J]. Computer Engineering and Applications, 2023, 59(18): 207-217.
[21] 袁磊, 唐海, 陈彦蓉, 等. 改进YOLOv5的复杂环境道路目标检测方法[J]. 计算机工程与应用, 2023, 59(16): 212-222.
YUAN L, TANG H, CHEN Y R, et al. Improved YOLOv5 for road target detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(16): 212-222.
[22] 胡淼, 姜麟, 陶友凤, 等. 改进YOLOv7的自动驾驶目标检测算法[J]. 计算机工程与应用, 2024, 60(11): 165-172.
HU M, JIANG L, TAO Y F, et al. Improved YOLOv7 automatic driving object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(11): 165-172.
[23] DING X H, ZHANG Y Y, GE Y X, et al. UniRepLKNet: a universal perception large-kernel ConvNet for audio video point cloud time-series and image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 5513-5524.
[24] YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714.
[25] 肖进胜, 赵陶, 周剑, 等. 基于上下文增强和特征提纯的小目标检测网络[J]. 计算机研究与发展, 2023, 60(2): 465-474.
XIAO J S, ZHAO T, ZHOU J, et al. Context augmentation and feature refinement network for tiny object detection[J]. Journal of Computer Research and Development, 2023, 60(2): 465-474.
[26] LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6027-6037.
[27] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. |