[1] CHENG N, WU S, WANG X, et al. AI for UAV-assisted IoT applications: a comprehensive review[J]. IEEE Internet of Things Journal, 2023, 10(16): 14438-14461.
[2] AL-LQUBAYDHI N, ALENEZI A, ALANAZI T, et al. Deep learning for unmanned aerial vehicles detection: a review[J]. Computer Science Review, 2024, 51: 100614.
[3] WU H, ZHU Y, LI S. CDYL for infrared and visible light image dense small object detection[J]. Scientific Reports, 2024, 14(1): 3510.
[4] 肖粲俊, 潘睿志, 李超, 等. 基于改进 YOLOv5s 绝缘子缺 陷检测技术研究[J]. 电子测量技术, 2022, 45(24): 137-144.
XIAO C J, PAN R Z, LI C, et al. Research on defect detection technology based on improved YOLOv5s insulator[J]. Electronic Measurement Technology, 2022, 45(24): 137-144.
[5] 李晓欢, 霍科辛, 颜晓凤, 等. 基于特征加权视觉增强的雷视融合车辆检测方法[J]. 公路交通科技, 2023, 40(2): 182-189.
LI X H, HO K X, YAN X F, et al. Thunder-vision fusion vehicle detection method based on feature-weighted visual enhancement [J]. Highway Traffic Technology, 2023, 40(2): 182-189.
[6] 郎磊, 刘宽, 王东. 基于 YOLOX-Tiny 的轻量级遥感图像目标检测模型[J]. 激光与光电子学进展, 2023, 60(2): 353-363.
LANG L, LIU K, WANG D. Lightweight remote sensing object detector based on YOLOX-Tiny[J]. Laser & Optoelectronics Progress, 2023, 60(2): 353-363.
[7] WANG F, WANG H, QIN Z, et al. UAV target detection algorithm based on improved YOLOv8[J]. IEEE Access, 2023, 11: 116534-116544.
[8] DAI X, CHEN Y, YANG J, et al. Dynamic DETR: end-to-end object detection with dynamic attention[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2988-2997.
[9] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[10] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010. 04159, 2020.
[11] CHEN Q, CHEN X, ZENG G, et al. Group DETR: fast training convergence with decoupled one-to-many label assignment[J]. arXiv:2207.13085, 2022.
[12] LIU S, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[J]. arXiv:2201. 12329, 2022.
[13] ZHANG H, LI F, LIU S, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[J]. arXiv:2203.03605, 2022.
[14] LV W, XU S, ZHAO Y, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[16] YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[17] ZHANG J, LI X, LI J, et al. Rethinking mobile block for efficient attention-based models[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision, 2023: 1389-1400.
[18] LIU X, PENG H, ZHENG N, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14420-14430.
[19] CAO Y, HE Z, WANG L, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2847-2854.
[20] SUO J, WANG T, ZHANG X, et al. HIT-UAV: a high-altitude infrared thermal dataset for unmanned aerial vehicle-based object detection[J]. Scientific Data, 2023, 10(1): 227.
[21] Alver_Lab_Ulastirma Dataset. Roboflow universe[EB/OL]. [2024-04-29]. https://universe.roboflow.com/new-0ikav/alver_lab_ulastirma.
[22] BOLYA D, FOLEY S, HAYS J, et al. Tide: a general toolbox for identifying object detection errors[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, Aug 23-28, 2020. Cham: Springer International Publishing, 2020: 558-573.
[23] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[24] WU W, LIU H, LI L, et al. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image[J]. PloS One, 2021, 16(10): e0259283.
[25] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[26] 潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150.
PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small object detection from perspective of drones[J]. Computer Engineering and Applications, 2024, 60(9): 142-150.
[27] SEO D M, WOO H J, KIM M S, et al. Identification of asbestos slates in buildings based on faster region-based convolutional neural network (Faster R-CNN) and drone-based aerial imagery[J]. Drones, 2022, 6(8): 194.
[28] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016. Cham: Springer International Publishing, 2016: 21-37.
[29] 陈佳慧, 王晓虹. 改进YOLOv5的无人机航拍图像密集小目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 100-108.
CHEN J H, WANG X H. Dense small object detection algorithm based on improved YOLOv5 in UAV aerial images [J]. Computer Engineering and Applications, 2024, 60(3): 100-108.
[30] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788. |