[1] LONGBOTHAM N, CHAAPEL C, BLEILER L, et al. Very high resolution multiangle urban classification analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(4): 1155-1170.
[2] TAYYEBI A, PIJANOWSKI B C, TAYYEBI A H. An urban growth boundary model using neural networks, GIS and radial parameterization: an application to Tehran, Iran[J]. Landscape and Urban Planning, 2011, 100(1/2): 35-44.
[3] HUANG X, WEN D W, LI J Y, et al. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery[J]. Remote Sensing of Environment, 2017, 196: 56-75.
[4] WANG Y B, ZHANG L Q, TONG X H, et al. A three-layered graph-based learning approach for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6020-6034.
[5] MISHRA N B, CREWS K A. Mapping vegetation morphology types in a dry savanna ecosystem: integrating hierarchical object-based image analysis with random forest[J]. International Journal of Remote Sensing, 2014, 35(3): 1175-1198.
[6] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
[7] MA L, CRAWFORD M M, TIAN J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4099-4109.
[8] DALPONTE M, ?RKA O H, GOBAKKEN T, et al. Tree species classification in boreal forests with hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2632-2645.
[9] GHAMISI P, PLAZA J, CHEN Y, et al. Advanced spectral classifiers for hyperspectral images: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1): 8-32.
[10] 李玥, 罗滔. 深度学习理论的高光谱图像分类方法[J]. 激光杂志, 2020, 41(9): 221-224.
LI Y, LUO T. Hyperspectral image classification based on deep learning theory[J]. Laser Journal, 2020, 41(9): 221-224.
[11] 赵红伟, 陈仲新, 刘佳. 深度学习方法在作物遥感分类中的应用和挑战[J]. 中国农业资源与区划, 2020, 41(2): 35-49.
ZHAO H W, CHEN Z X, LIU J. Deep learning for crop classification of remote sensing data: applications and challenges[J]. Journal of China Agricultural Resources and Regional Planning, 2020, 41(2): 35-49.
[12] TONG L, ZHANG J, ZHANG Y. Classification of hyperspectral image based on deep belief networks[C]//Proceedings of the IEEE International Conference on Image Processing, 2014: 5132-5136.
[13] XU Q, XIAO Y, WANG D, et al. CSA-MSO3DCNN: multiscale octave 3D CNN with channel and spatil attention for hyperspectral image classification[J]. Remote Sensing, 2020, 12(1): 188.
[14] GAO K, GUO W, YU X, et al. Deep induction network for small samples classification of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3462-3477.
[15] HU W, HUANG Y Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: 1-12.
[16] ZHAO W Z, DU S H. Learning multiscale and deep representations for classifying remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113: 155-165.
[17] YUE J, ZHAO W, MAO S, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(4/5/6): 468-477.
[18] CHAMISI P, CHEN Y, XIAO X Z. A self-improving convolution neural network for the classification of hyperspectral data[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1537-1541.
[19] LI Y, ZHANG H K, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network [J]. Remote Sensing, 2017, 9(1): 67.
[20] ROY S K, KRISHNA G, et al. HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281.
[21] HE X, CHEN Y. Transferring CNN ensemble for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5): 876-880.
[22] MOU L, GHAMISI P, ZHU X X. Unsupervised spectral-spatial feature learning via deep residual Conv-Deconv network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 391-406.
[23] MULLER G, RIOS M, SENNRICH A, et al. Why self-attention? a targeted evaluation of neural machine translation architectures[J]. arXiv:1808.08946, 2018.
[24] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[25] 李清格, 杨小冈, 卢瑞涛, 等. 计算机视觉中的Transformer发展综述[J]. 小型微型计算机系统, 2023, 44(4): 850-861.
LI Q G, YANG X G, LU R T, et al. Transformer in computer vision: a survey[J]. Journal of Chinese Mini-Micro Computer Systems, 2023, 44(4): 850-861.
[26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[27] QING Y H, LIU W Y, FENG L Y, et al. Improved transformer net for hyperspectral image classification[J]. Remote Sensing, 2021, 13(11): 2216.
[28] HONG D F, HAN Z, YAO J, et al. SpectralFormer: rethinking hyperspectral image classi?cation with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-15.
[29] MEI S H, SONG C, MA M Y, et al. Hyperspectral image classification using group-aware hierarchical transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[30] 张艺超, 郑向涛, 卢孝强. 基于层级Transformer的高光谱图像分类方法[J]. 测绘学报, 2023, 52(7): 1139-1147.
ZHANG Y C, ZHENG X T, LU X Q. Hyperspectral image classification method based on hierarchical trans-former network[J]. Journal of Geodesy and Geoinformation Science, 2023, 52(7): 1139-1147.
[31] 叶珍, 白遴, 何明一. 高光谱图像空谱特征提取综述[J]. 中国图象图形学报, 2021, 26(8): 1737-1763.
YE Z, BAI L, HE M Y. Review of spatial-spectral feature extraction for hyperspectral images[J]. Journal of Image and Graphics, 2021, 26(8): 1737-1763.
[32] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]//Advances in Neural Information Processing Systems, 2001: 556-562.
[33] ZHONG Y F, HU Y, LUO C, et al. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing, 2020, 250: 112012.
[34] ZHONG Y F, WANG X Y, XU Y, et al. Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62.
[35] 岑奕, 张立福, 张霞, 等. 雄安新区马蹄湾村航空高光谱遥感影像分类数据集[J]. 遥感学报, 2020, 24(11): 1299-1306.
CEN Y, ZHANG L F, ZHANG X, et al. Aerial hyperspectral remote sensing classification dataset of Xiongan new area (Matiwan Village)[J]. Journal of Remote Sensing, 2020, 24(11): 1299-1306. |