[1] CHEN J, YUAN Z, PENG J, et al. DASNet: dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1194-1206.
[2] MZID N, CASTALDI F, TOLOMIO M, et al. Evaluation of agricultural bare soil properties retrieval from landsat 8, sentinel-2 and PRISMA satellite data[J]. Remote Sensing, 2022, 14(3): 714.
[3] PICUNO P, CILLIS G, STATUTO D. Investigating the time evolution of a rural landscape: how historical maps may provide environmental information when processed using a GIS[J]. Ecological Engineering, 2019, 139: 105580.
[4] SCHUMANN G J P, BRAKENRIDGE G R, KETTNER A J, et al. Assisting flood disaster response with earth observation data and products: a critical assessment[J]. Remote Sensing, 2018, 10(8): 1230.
[5] ZHANG H, GONG M, ZHANG P, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1666-1670.
[6] KHERIF F, LATYPOVA A. Principal component analysis[M]//Machine learning.[S.l.]: Academic Press, 2020: 209-225.
[7] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[8] 吴小所, 王利玲, 吴朝阳, 等. 基于双时相特征筛选的遥感图像变化检测模型[J]. 地球信息科学学报, 2023, 25(11): 2268-2280.
WU X S, WANG L L, WU C Y, et al. Remote sensing change detection model based on dual temporal feature screening[J]. Journal of Geo-Information Science, 2023, 25(11): 2268-2280.
[9] 白阳, 刘斌, 李彦彤. 基于SSD的可回收垃圾检测研究[J]. 陕西科技大学学报, 2020, 38(6): 152-158.
BAI Y, LIU B, LI Y T. Research on recyclable garbage detection based on SSD algorithm[J]. Journal of Shaanxi University of Science & Technology, 2020, 38(6): 152-158.
[10] 许伟, 熊卫华, 姚杰, 等. 基于改进YOLOv3算法在垃圾检测上的应用[J]. 光电子·激光, 2020, 31(9): 928-938.
XU W, XIONG W H, YAO J, et al. Application of improved YOLOv3 algorithm in garbage detection[J]. Optoelectronics·Laser, 2020, 31(9): 928-938.
[11] CHEN H, SHI Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662.
[12] PENG D, BRUZZONE L, ZHANG Y, et al. SCDNET: a novel convolutional network for semantic change detection in high resolution optical remote sensing imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102465.
[13] FENG Y, JIANG J, XU H, et al. Change detection on remote sensing images using dual-branch multilevel intertemporal network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[15] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, August 23-28, 2020: 213-229.
[16] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[17] WU H, XIAO B, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 22-31.
[18] CHEN H, QI Z, SHI Z. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
[19] ZHANG C, WANG L, CHENG S, et al. SwinSUNet: pure transformer network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[21] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[22] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[23] CHEN H, SHI Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662.
[24] JI S, WEI S, LU M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 574-586.
[25] ZHANG H, GONG M, ZHANG P, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1666-1670.
[26] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[27] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer?Assisted Intervention (MICCAI 2015), Munich, Germany, October 5-9, 2015: 234-241.
[28] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
[29] YU C, WANG J, PENG C, et al. BiseNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 325-341.
[30] DAUDT R C, LE S B, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), 2018: 4063-4067.
[31] FANG S, LI K, SHAO J, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
[32] BANDARA W G C, PATEL V M. A transformer-based siamese network for change detection[C]//Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022), 2022: 207-210.
[33] FENG Y, XU H, JIANG J, et al. ICIF-Net: Intra-scale cross-interaction and inter-scale feature fusion network for bitemporal remote sensing images change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. |