[1] LAND E H. The retinex theory of color vision[J]. Scientific America, 1977, 237(6): 108-128.
[2] LAND E H. The retinex[J]. American Scientist, 1964, 52(2): 247-264.
[3] SEOW M J, ASARI V K. Ratio rule and homomorphic filter for enhancement of digital colour image[J]. Neurocomputing, 2006, 69(7/8/9): 954-958.
[4] STARK J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-896.
[5] MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
[6] KAPLAN N H. Real-world image dehazing with improved joint enhancement and exposure fusion[J]. Journal of Visual Communication and Image Representation, 2023, 90: 103720.
[7] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
[8] NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254.
[9] NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
[10] TANG K, YANG J, WANG J. Investigating haze-relevant features in a learning framework for image dehazing[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 2995-3002.
[11] 金天虎, 陶砚蕴, 李佐勇. 基于超像素图像分割的暗通道先验去雾改进算法[J]. 电子学报, 2023, 51(1): 146-159.
JIN T H, TAO Y Y, LI Z Y. An improved dark channel prior dehazing algorithm based on superpixel image segmentation[J]. Acta Electronica Sinica, 2023, 51(1): 146-159.
[12] CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
[13] LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4780-4788.
[14] QIN?X, WANG?Z?L, BAI Y?C, et al. FFA-net: feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11908-11915.
[15] ZHENG Z, REN W, CAO X, et al. Ultra-high-definition image dehazing via multi-guided bilateral learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16180-16189.
[16] FENG T, WANG C S, CHEN X W, et al. URNet: a U-Net based residual network for image dehazing[J]. Applied Soft Computing, 2021, 102: 106884.
[17] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[19] JIA T Y, LI J F, ZHUO L, et al. Effective meta-attention dehazing networks for vision-based outdoor industrial systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1511-1520.
[20] REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3253-3261.
[21] QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced Pix2pix dehazing network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8152-8160.
[22] 但志平, 方帅领, 孙航, 等. 基于双判别器异构CycleGAN框架下多阶通道注意力校准的室外图像去雾[J]. 电子学报, 2023, 51(9): 2558-2571.
DAN Z P, FANG S L, SUN H, et al. Outdoor image dehazing based on multi-order channel attention calibration using a dual-discriminator heterogeneous CycleGAN framework[J]. Acta Electronica Sinica, 2023, 51(9): 2558-2571.
[23] ZHENG Y, SU J, ZHANG S, et al. Dehaze-AGGAN: unpaired remote sensing image dehazing using enhanced attention-guide generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5630413.
[24] YANG Y, WANG C, LIU R, et al. Self-augmented unpaired image dehazing via density and depth decomposition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2027-2036.
[25] WANG P, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460.
[26] LI B Y, REN W Q, FU D P, et al. Benchmarking single image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505.
[27] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 746-760. |