计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (4): 241-252.DOI: 10.3778/j.issn.1002-8331.2309-0455

• 图形图像处理 • 上一篇    下一篇

两阶段特征迁移图像去雾算法

袁姮,颜廷昊,张晟翀   

  1. 1.辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
    2.光电信息控制和安全技术重点实验室,天津 300308
  • 出版日期:2025-02-15 发布日期:2025-02-14

Two-Stage Feature Transfer Image Dehazing Algorithm

YUAN Heng, YAN Tinghao, ZHANG Shengchong   

  1. 1.College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
    2.Key Laboratory of Optoelectronic Information Control and Security Technology, Tianjin 300308, China
  • Online:2025-02-15 Published:2025-02-14

摘要: 针对常见去雾算法处理后图像容易产生伪影、颜色失真以及对非均匀雾气影响下图像的去雾效果不理想等问题,提出了两阶段特征迁移图像去雾算法,基于编解码器结构实现图像去雾。第一阶段将清晰图像送入特征学习网络,通过混合注意力机制学习清晰图像空间结构信息与色彩规律。第二阶段利用特征迁移损失,将特征学习网络中学习到的清晰图像特征知识迁移至特征细化图像去雾网络中,并通过多尺度特征提取模块与全局特征细化块对图像上下文信息进行有效提取与融合。最后将两阶段输出进行特征融合,恢复清晰无雾图像。实验结果表明,该算法在RESIDE数据集以及真实非均匀雾天图像中具备较好的去雾效果,且处理后图像色彩合理,更加符合人类视觉感知。

关键词: 图像去雾, 卷积神经网络, 特征迁移, 特征学习, 混合注意力机制, 全局特征细化

Abstract: To solve the problems such as artifacts, color distortion and unsatisfactory dehazing effect on images under the influence of non-uniform fog after image processing by common dehazing algorithms, a two-stage feature transfer image dehazing algorithm is proposed, which is implemented based on the encoder-decoder structure. In the first stage, the clear image is sent to the feature learning network, and the spatial structure information and color rules of the clear image are learned through the hybrid attention mechanism. In the second stage, the feature transfer loss is used to transfer the clear image feature knowledge learned in the feature learning network to the feature refinement image dehazing network. At the same time, the image context information is effectively extracted and fused through the multi-scale feature extraction module and the global feature refinement block. Finally, the output of the two stages is fused to restore a clear and dehazing image. The experimental results show that the algorithm has a good dehazing effect in the RESIDE dataset and real non-uniform foggy images, and the color of the processed image is reasonable and more in line with human visual perception.

Key words: image dehazing, convolutional neural network, feature transfer, feature learning, hybrid attention mechanism, global feature refinement