计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (2): 316-326.DOI: 10.3778/j.issn.1002-8331.2401-0424

• 大数据与云计算 • 上一篇    下一篇

融合人群移动轨迹和时空-类别的下一个兴趣点推荐

郭秉璇,杨晓文,孙福盛,况立群,张元,韩慧妍   

  1. 1.中北大学 计算机科学与技术学院,太原 030051
    2.机器视觉与虚拟现实山西省重点实验室,太原 030051
    3.山西省视觉信息处理及智能机器人工程研究中心,太原 030051
  • 出版日期:2025-01-15 发布日期:2025-01-15

Next Point of Interest Recommendation Fusing Crowd Movement Trajectories and Spatiotemporal-Category Features

GUO Bingxuan, YANG Xiaowen, SUN Fusheng, KUANG Liqun, ZHANG Yuan, HAN Huiyan   

  1. 1.School of Computer Science and Technology, North University of China, Taiyuan 030051, China
    2.Shanxi Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, China
    3.Shanxi Province’s Vision Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051, China
  • Online:2025-01-15 Published:2025-01-15

摘要: 下一个兴趣点推荐(next POI recommendation)作为基于位置社交网络的主要应用之一,为用户和服务提供商带来了显著的实用价值。现有的POI推荐模型主要依赖于目标用户的历史签到数据进行推荐,没有充分利用其他用户移动轨迹数据的潜在价值,也未有效提取和融合时空-类别信息的特征。为了解决上述问题,提出了一种融合人群移动轨迹和时空-类别的下一个兴趣点推荐模型(GGCN-STC)。依据用户的移动轨迹构建区域轨迹图,提出了门控图卷积神经网络对共同移动轨迹进行建模;将签到序列中的时空-类别信息进行多维度的特征融合;利用自注意力机制捕获用户偏好,为用户提供更准确的POI推荐。在两个真实数据集上进行实验比较与分析,结果表明该模型优于其他模型。

关键词: 兴趣点推荐, 门控图卷积神经网络, 自注意力机制, 时空网络

Abstract: Next point of interest (POI) recommendation, as one of the main applications of location-based social networks, brings significant practical value to both users and service providers. However, existing POI recommendation models mainly rely on the historical check-in data of target users, without fully leveraging the potential value of movement trajectories data from others, nor effectively extracting and fusing spatiotemporal-category features. To address these issues, this paper proposes GGCN-STC, a next POI recommendation model that integrates crowd movement trajectories and spatiotemporal-category features. Firstly, a region trajectory graph is constructed based on user movement trajectories, and the gated graph convolutional neural network is proposed to construct a model of shared graph. Secondly, spatiotemporal-category information from check-in sequences is fused into multi-dimensional features. Finally, it provides more accurate POI recommendations for users by capturing their preferences with self-attention mechanisms. Experiments are conducted for comparison and analysis on two real datasets, and the results demonstrate that the proposed model outperforms others.

Key words: POI recommendation, gated graph convolutional neural network, self-attention, spatiotemporal network