[1] 李杰, 王玉霞, 赵旭东. 电商企业商品销量的预测方法[J]. 统计与决策, 2018, 34(22): 176-179.
LI J, WANG Y X, ZHAO X D. Forecast method of commodity sales of E-commerce enterprises[J]. Statistics & Decision, 2018, 34(22): 176-179.
[2] 石通斌. 基于Xgboost的商品需求预测与分仓规划[D]. 成都: 西南财经大学, 2017.
SHI T B. Commodity demand forecasting and warehouse planning base on Xgboost model[D]. Chengdu: Southwestern University of Finance and Economics, 2017.
[3] 刘丽, 裴行智, 雷雪梅. 基于时间卷积注意力网络的剩余寿命预测方法[J]. 计算机集成制造系统, 2022, 28(8): 2375-2386.
LIU L, PEI X Z, LEI X M. Temporal convolutional attention network for remaining useful life estimation[J]. Computer Integrated Manufacturing Systems, 2022, 28(8): 2375-2386.
[4] 刘吉华, 张梦迪, 彭红霞, 等. 基于卷积神经网络的汽车销量预测模型[J]. 计算机科学, 2021, 48(1): 178-183.
LIU J H, ZHANG M D, PENG H X, et al. Automobile sales forecasting model based on convolutional neural network[J]. Computer Science, 2021, 48(1): 178-183.
[5] 荣飞琼, 郭梦飞. 基于卷积神经网络的在线产品销量预测分析研究[J]. 西北民族大学学报 (哲学社会科学版), 2019, 40(2): 15-26.
RONG F Q, GUO M F. On suitability of online product sales prediction model based on convolutional neural networks[J]. Journal of Northwest minzu University (Philosophy and Social Sciences), 2019, 40(2): 15-26.
[6] 邱俊杰, 郑红, 程云辉. 基于多尺度LSTM预测模型研究[J]. 系统仿真学报, 2022, 34(7): 1593-1604.
QIU J J, ZHENG H, CHENG Y H. Research on prediction of model based on multi-scale LSTM[J]. Journal of System Simulation, 2022, 34(7): 1593-1604.
[7] 王逸文, 王维莉. 基于LSTM-RELM组合模型的电商GMV预测研究[J]. 计算机工程与应用, 2023, 59(10): 321-327.
WANG Y W, WANG W L. Research on GMV prediction of e-commerce based on LSTM-RELM combination model [J]. Computer Engineering and Applications, 2023, 59 (10): 321-327.
[8] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1-19.
HU Y, LUO D Y, HUA K, et al. Overview on deep learning[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 1-19.
[9] 高学金, 孟令军, 高慧慧. 基于注意力LSTM的多阶段发酵过程集成质量预测[J]. 控制与决策, 2022, 37(3): 616-624.
GAO X J, MENG L J, GAO H H. Integrated quality prediction of multi-stage fermentation process with attention-based LSTM[J]. Control and Decision, 2022, 37 (3): 616-624.
[10] 谢坤, 容钰添, 胡奉平, 等. 基于数据集成的随机森林算法[J]. 计算机工程, 2020, 46(12): 290-298.
XIE K, RONG Y T, HU F P, et al. Random forest algorithm based on data integration[J]. Computer Engineering, 2020, 46(12): 290-298.
[11] ZHOU Z H, FENG J. Deep forest: towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 3553-3559.
[12] GUO Y, LIU S H, LI Z H, et al. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data[J]. BMC Bioinformatics, 2018, 19(5): 1-13.
[13] SU R, LIU X Y, WEI L Y, et al. Deep-resp-forest: a deep forest model to predict anti-cancer drug response[J]. Methods, 2019, 166: 91-102.
[14] CHU Y Y, KAUSHIK A C, WANG X G, et al. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features[J]. Briefings in Bioinformatics, 2021, 22(1): 451-462.
[15] ZHOU M, ZENG X H, CHEN A Z. Deep forest hashing for image retrieval[J]. Pattern Recognition, 2019, 95: 114-127.
[16] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
[17] 葛绍林, 叶剑, 何明祥. 基于深度森林的用户购买行为预测模型[J]. 计算机科学, 2019, 46(9): 190-194.
GE S L, YE J, HE M X. Prediction model of user purchase behavior based on deep forest[J]. Computer Science, 2019, 46(9): 190-194.
[18] 宫振华, 王嘉宁, 苏翀. 一种加权的深度森林算法[J]. 计算机应用与软件, 2019, 36(2): 274-278.
GONG Z H, WANG J N, SU C. A weighted deep forest algorithm[J]. Computer Applications and Software, 2019, 36(2): 274-278.
[19] 陈寅栋, 李朝锋, 桑庆兵. 卷积神经网络结合深度森林的无参考图像质量评价[J]. 激光与光电子学进展, 2019, 56 (11): 131-137.
CHEN Y D, LI C F, SANG Q B. Unreferenced image quality evaluation based on convolutional neural network combined with deep forest[J]. Laser & Optoelectronics Progress, 2019, 56(11): 131-137.
[20] 陈彦如, 张涂静娃, 杜千, 等. 基于深度森林的高铁站室内热舒适度等级预测[J]. 计算机应用, 2021, 41(1): 258-264.
CHEN Y R, ZHANG T J W, DU Q, et al. Prediction of indoor thermal comfort level of high-speed railway station based on deep forest[J]. Journal of Computer Applications, 2021, 41(1): 258-264. |