计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (1): 243-251.DOI: 10.3778/j.issn.1002-8331.2308-0273

• 图形图像处理 • 上一篇    下一篇

改进YOLOv7的结直肠息肉检测算法

薛钦原,胡珊珊,胡新军,严松才   

  1. 1.四川轻化工大学 机械工程学院,四川 宜宾 643000
    2.四川省人民医院 消化内科中心,成都 610072
  • 出版日期:2025-01-01 发布日期:2024-12-31

Improved YOLOv7 Algorithm for Colorectal Polyp Detection

XUE Qinyuan, HU Shanshan, HU Xinjun, YAN Songcai   

  1. 1.School of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 643000, China
    2.Department of Gastroenterology, Sichuan Provincial People’s Hospital, Chengdu 610072, China
  • Online:2025-01-01 Published:2024-12-31

摘要: 计算机辅助诊断对提高息肉诊断准确率和降低结直肠癌死亡率至关重要,但息肉形态各异,息肉类似物和肠内的复杂环境导致目前的方法存在较多的误诊和漏诊。因此提出了一种改进的YOLOv7结直肠息肉检测算法(YOLOv7-IDH),使用含隐式知识的高效解耦头,充分利用隐含信息并防止分类和回归任务之间相互干扰;引入全局注意力机制,增强模型对浅层特征的提取能力;对SPPCSPC模块进行优化,减少模型参数和提高收敛速度。实验结果表明,改进模型在组合数据集上的F1分数和mAP@0.5分别达到了94.8%和97.1%,可以满足息肉自动检测的要求。

关键词: 息肉检测, 深度学习, 计算机辅助诊断, 解耦头, 注意力机制

Abstract: Computer-aided diagnosis is essential to improve polyp diagnostic accuracy and reduce colorectal cancer mortality, but the variety of polyp morphologies, polyp analogs and the complex environment in the bowel lead to more misdiagnosis and underdiagnosis with current methods. Therefore, an improved YOLOv7 colorectal polyp detection algorithm (YOLOv7-IDH) is proposed, which firstly, efficient decoupled heads with implicit knowledge are used to make full use of the implicit information and to prevent mutual interference between classification and regression tasks; then, global attention mechanism is introduced to enhance the model’s capability of extracting shallow features; finally, the SPPCSPC module is optimized to reduce the model parameters and to improve the convergence speed. The experimental results show that the F1 score and mAP@0.5 of the improved model on the combined dataset reach 94.8% and 97.1%, respectively, which can meet the requirements for automatic polyp detection.

Key words: polyp detection, deep learning, computer-aided diagnosis, decoupled head, attention mechanism