[1] 龙思丹, 孙希珍, 赵栋燕, 等. 肠息肉病因学相关性研究进展[J]. 医学综述, 2020, 26(14): 2728-2732.
LONG S D, SUN X Z, ZHAO D Y, et al. Research progress in etiological correlation of intestinal polyps[J]. Medical Recapitulate, 2020, 26(14): 2728-2732.
[2] FREEDMAN D, BLAU Y, KATZIR L, et al. Detecting deficient coverage in colonoscopies[J]. IEEE Transactions on Medical Imaging, 2020, 39(11): 3451-3462.
[3] JIANG W, XIN L, ZHU S, et al. Risk factors related to polyp miss rate of short-term repeated colonoscopy[J]. Digestive Diseases and Sciences, 2023, 68(5): 2040-2049.
[4] SHIN Y, QADIR H A, AABAKKEN L, et al. Automatic colon polyp detection using region based deep CNN and post learning approaches[J]. IEEE Access, 2018, 6: 40950-40962.
[5] LIU X, GUO X, LIU Y, et al. Consolidated domain adaptive detection and localization framework for cross-device colonoscopic images[J]. Medical Image Analysis, 2021, 71: 102052.
[6] QADIR H A, SHIN Y, SOLHUSVIK J, et al. Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction[J]. Medical Image Analysis, 2021, 68: 101897.
[7] PACAL I, KARABOGA D. A robust real-time deep learning based automatic polyp detection system[J]. Computers in Biology and Medicine, 2021, 134: 104519.
[8] RAHMAN M M, WADUD M A H, HASAN M M. Computerized classification of gastrointestinal polyps using stacking ensemble of convolutional neural network[J]. Informatics in Medicine Unlocked, 2021, 24: 100603.
[9] HACKING S M, CHAKRABORTY B, NASIM R, et al. A holistic appraisal of stromal differentiation in colorectal cancer: biology, histopathology, computation, and genomics[J]. Pathology-Research and Practice, 2021, 220: 153378.
[10] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[11] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv:2112.05561, 2021.
[12] GAO P, LU J, LI H, et al. Container: context aggregation network[J]. arXiv:2106.01401, 2021.
[13] DOLLáR P, SINGH M, GIRSHICK R. Fast and accurate model scaling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
[14] VASU P K A, GABRIEL J, ZHU J, et al. An improved one millisecond mobile backbone[J]. arXiv:2206.04040, 2022.
[15] SONG G, LIU Y, WANG X. Revisiting the sibling head in object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[16] WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[17] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.
[18] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[19] WANG C Y, YEH I H, LIAO H Y M. You only learn one representation: unified network for multiple tasks[J]. arXiv:2105.04206, 2021.
[20] NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018.
[22] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[23] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
[24] SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9: 283-293.
[25] BERNAL J, SáNCHEZ F J, FERNáNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111.
[26] JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]//Proceedings of the 26th International Conference on Multimedia Modeling, Daejeon, South Korea, 2020.
[27] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016.
[28] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision, 2020.
[29] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017.
[30] GLENN J. YOLOv5 release v6.1[EB/OL].[2023-0510]. https://github.com/ultralytics/yolov5/releases/tag/v6.1.
[31] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[32] JIA X, MAI X, CUI Y, et al. Automatic polyp recognition in colonoscopy images using deep learning and two-stage pyramidal feature prediction[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1570-1584.
[33] WANG D, ZHANG N, SUN X, et al. AFP-Net: realtime anchor-free polyp detection in colonoscopy[C]//Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence, 2019.
[34] YANG K, CHANG S, TIAN Z, et al. Automatic polyp detection and segmentation using shuffle efficient channel attention network[J]. Alexandria Engineering Journal, 2022, 61(1): 917-926. |