[1] LIU B. Sentiment analysis and opinion mining[M]. Cham: Springer, 2022.
[2] LIAO J, WANG M, CHEN X, et al. Dynamic commonsense knowledge fused method for Chinese implicit sentiment analysis[J]. Information Processing & Management, 2022, 59(3): 102934.
[3] ZHANG D, ZHANG M, GUO T, et al. In your face: sentiment analysis of metaphor with facial expressive features[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, 2021: 1-8.
[4] 冯亚琴, 沈凌洁, 胡婷婷, 等. 利用语音与文本特征融合改善语音情感识别[J].数据采集与处理, 2019, 34(4): 625-631.
FENG Y Q, SHEN L J, HU T T, et al. Using speech and text features fusion to improve speech emotion recognition[J].Journal of Data Acquisition& Processing, 2019, 34(4): 625-631.
[5] 范习健, 杨绪兵, 张礼, 等. 一种融合视觉和听觉信息的双模态情感识别算法[J]. 南京大学学报 (自然科学版), 2021, 57(2): 309-317.
FAN X J, YANG X B, ZHANG L, et al. Emotion recognition based on visual and auditory information[J]. Journal of Nanjing University (Natural Sciences), 2021, 57(2): 309-317.
[6] LU Y, SAKAMOTO K, SHIBUKI H, et al. Construction of a multilingual annotated corpus for deeper sentiment understanding in social media[J]. Information and Media Technologies, 2017, 12: 111-171.
[7] TURNEY P, NEUMAN Y, ASSAF D, et al. Literal and metaphorical sense identification through concrete and abstract context[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 2011: 680-690.
[8] LIAO J, WANG S, LI D. Identification of fact-implied implicit sentiment based on multi-level semantic fused representation[J]. Knowledge-Based Systems, 2019, 165: 197-207.
[9] GANDY L, ALLAN N, ATALLAH M, et al. Automatic identification of conceptual metaphors with limited knowledge[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2013: 328-334.
[10] REN J, XIA F, CHEN X, et al. Matching algorithms: fundamentals, applications and challenges[J].IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5(3): 332-350.
[11] NISSIM M, MARKERT K. Syntactic features and word similarity for supervised metonymy resolution[C]//Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, 2003: 56-63.
[12] LI Z Y, ZOU Y C, ZHANG C, et al. Learning implicit sentiment in aspect-based sentiment analysis with supervised contrastive pre-training[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021: 246-256.
[13] XIANG C, REN Y, JI D. Identifying implicit polarity of events by using an attention-based neural network model[J]. IEEE Access, 2019, 7: 133170-133177.
[14] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014: 1746-1751.
[15] GRAVES A, JAITLY N, MOHAMED A. Hybrid speech recognition with deep bidirectional LSTM[C]//Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 2013: 273-278.
[16] FU L, LIU S. A syntax-based BSGCN model for Chinese implicit sentiment analysis with multi-classification[C]//Proceedings of the 2022 IEEE 16th International Conference on Application of Information and Communication Technologies, 2022: 1-7.
[17] LI X, LI Q. Using BERT and word definitions for implicit sentiment analysis[C]//Proceedings of the 2022 IEEE 24th International Conference on High Performance Computing & Communications, 2022: 1063-1068.
[18] ZHOU X, WAN X, XIAO J. Attention-based LSTM network for cross-lingual sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 247-256.
[19] 张军, 张丽, 沈凡凡, 等. RoBERTa融合BiLSTM及注意力机制的隐式情感分析[J]. 计算机工程与应用, 2022, 58(23): 142-150.
ZHANG J, ZHANG L, SHEN F F, et al. Implicit sentiment analysis based on RoBERTa fused with BiLSTM and attention mechanism[J].Computer Engineering and Applications, 2022, 58(23): 142-150.
[20] 李嘉伟, 张顺香, 李书羽, 等.基于文本图表征的中文隐式情感分析模型[J/OL].数据分析与知识发现: 1-16[2024-05-09].http://kns.cnki.net/kcms/detail/10.1478.G2.20231225.
0956.004.html.
LI J W, ZHANG S X, LI S Y, et al. Chinese implicit sentiment analysis model based on text graph representation[J/OL]. Data Analysis and Knowledge Discovery, 1-16[2024-05-09].http://kns.cnki.net/kcms/detail/10.1478.G2.20231225.
0956.004.html.
[21] 马圆圆, 禹龙, 田生伟, 等.融合RoBERTa和注意力机制的隐喻方面级情感分析[J].小型微型计算机系统, 2023, 44(10): 2236-2241.
MA Y Y, YU L, TIAN S W, et al. Metaphorical aspect sentiment analysis based on RoBERTa and attention mechanism[J]. Journal of Chinese Computer Systems, 2023, 44(10): 2236-2241.
[22] FORCEVILLE C, URIOS-APARISI E.Multimodal metaphor[M]. Berlin:De Gruyter Mouton, 2009.
[23] SHUTOVA E, KIELA D, MAILLARD J. Black holes and white rabbits: metaphor identification with visual features[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 160-170.
[24] CHEN M, UBUL K, XU X, et al. Connecting text classification with image classification: a new preprocessing method for implicit sentiment text classification[J]. Sensors, 2022, 22(5): 1899.
[25] STEEN G, DORST A G, HERRMANN J B, et al. A method for linguistic metaphor identification: from MIP to MIPVU[M]. Amsterdam: Benjamins, 2010.
[26] NOZZA D, FERSINI E, MESSINA E. A multi-view sentiment corpus[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017: 273-280.
[27] ZHANG D, LIN H, YANG L, et al. Construction of a Chinese corpus for the analysis of the emotionality of metaphorical expressions[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 144-150.
[28] STEEN G J. Visual metaphor: structure and process[M]. Amsterdam: Benjamins, 2018.
[29] ZHANG D, ZHANG M, ZHANG H, et al. Multimet: a multimodal dataset for metaphor understanding[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 3214-3225.
[30] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North-American-Chapter of the Association-for-Computational-Linguistics-Human Language Technologies, 2019: 4171-4186.
[31] MCFEE B, RAFFEL C, LIANG D, et al. Librosa: audio and music signal analysis in python[C]//Proceedings of the 14th Python in Science Conference, 2015: 18-25.
[32] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE Signal Processing Letters, 2016, 23(10):1499-1503.
[33] BALTRUSAITIS T, ZADEH A, LIM Y C, et al. Openface 2.0: facial behavior analysis toolkit[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition , 2018: 59-66.
[34] ZADEH A, ZELLERS R, PINCUS E, et al. Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages[J]. IEEE Intelligent Systems, 2016, 31(6): 82-88.
[35] ZADEH A A B, LIANG P P, PORIAO S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 2236-2246.
[36] PORIA S, CAMBRIA E, HAZARIKA D, et al. Context-dependent sentiment analysis in user-generated videos[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 873-883.
[37] CHEN M, LI X. SWAFN: sentimental words aware fusion network for multimodal sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 1067-1077.
[38] WANG L, PENG J, ZHENG C, et al. A cross modal hierarchical fusion multimodal sentiment analysis method based on multi-task learning[J].Information Processing & Management, 2024, 61(3): 103675.
[39] 孙杰, 车文刚, 高盛祥. 面向多模态情感分析的多通道时序卷积融合[J].计算机科学与探索, 2024, 18(11): 3041-3050.
SUN J, CHE W G, GAO S X. Multi-channel temporal convolution fusion for multimodal sentiment analysis[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 3041-3050.
[40] HU G, LIN T E, ZHAO Y, et al. UniMSE: towards unified multimodal sentiment analysis and emotion recognition[J]. arXiv:2211.11256, 2022.
[41] CAI S, YUAN J, LI L. A mutual implicit sentiment analysis model with bundle-aware contrastive learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, 2023: 1-5. |