计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (2): 304-315.DOI: 10.3778/j.issn.1002-8331.2401-0260

• 大数据与云计算 • 上一篇    下一篇

改进DDPG的端边DNN协同推理策略

和涛,栗娟   

  1. 1.武汉工程大学 计算机科学与工程学院,武汉 430205
    2.智能机器人湖北省重点实验室(武汉工程大学),武汉 430205
  • 出版日期:2025-01-15 发布日期:2025-01-15

Improving DDPG’s Local-Edge DNN Collaborative Inference Strategy

HE Tao, LI Juan   

  1. 1.School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
    2.Hubei Provincial Key Laboratory of Intelligent Robot (Wuhan Institute of Technology), Wuhan 430205, China
  • Online:2025-01-15 Published:2025-01-15

摘要: 当前基于端边的深度神经网络(deep neural network,DNN)协同推理策略仅关注于优化时延敏感型任务的推理时延,而未考虑能耗敏感型任务的推理能耗成本,以及DNN划分后在异构边缘服务器之间的高效卸载问题。基于此,提出一种改进深度确定性策略梯度(deep deterministic policy gradients,DDPG)的端边DNN协同推理策略,综合考虑任务对时延与能耗的敏感度,进而对推理成本进行综合优化。该策略将DNN划分与计算卸载问题分离,对不同协同设备建立预测模型,去预测出协同推理DNN的最优划分点与推理综合成本;根据预测的推理综合成本建立奖励函数,使用DDPG算法制定每个DNN推理任务的卸载策略,进而进行协同推理。实验结果证明,相比其他DNN协同推理策略,该策略在复杂的DNN协同推理环境下决策更高效,推理时延平均减少了46%,推理能耗平均减少了44%,推理综合成本平均降低了46%。

关键词: 边缘智能, 深度神经网络(DNN), 协同推理, 深度确定性策略梯度, 任务卸载, 能耗优化

Abstract: The current edge-based collaborative inference strategy for deep neural network (DNN), only focuses on optimizing the latency of latency-sensitive tasks, without considering the inference energy cost of energy-sensitive tasks, as well as the efficient unloading problem between heterogeneous edge servers after DNN division. Based on this, an improved deep deterministic policy gradients (DDPG)’s edge-based DNN collaborative inference strategy is proposed, which comprehensively considers the sensitivity of tasks to latency and energy consumption, and then comprehensively optimizes the inference cost. This strategy separates the DNN partitioning from the computation unloading problem. Firstly, predictive models are established for different collaborative devices to predict the optimal partitioning point and the comprehensive inference cost of collaborative inference DNN. Then, based on the predicted comprehensive inference cost, a reward function is established, and the DDPG algorithm is used to formulate the unloading strategy for each DNN inference task, thereby achieving collaborative inference. Experimental results demonstrate that compared to other DNN collaborative inference strategies, this strategy makes more efficient decisions in complex DNN collaborative inference environments, reducing the average inference latency by 46%, the average inference energy consumption by 44%, and the average inference comprehensive cost by 46%.

Key words: edge intelligence, deep neural network (DNN), collaborative inference, deep deterministic policy gradients, task offloading, energy consumption optimization