[1] PALHARES R M, YUAN Y, WANG Q. Artificial intelligence in industrial systems[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9636-9640.
[2] WANG K, WANG Y, SUN Y, et al. Green industrial Internet of things architecture: an energy-efficient perspective[J]. IEEE Communications Magazine, 2016, 54(12): 48-54.
[3] SHI W, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646.
[4] QIU T, CHI J, ZHOU X, et al. Edge computing in industrial internet of things: architecture, advances, and challenges[J]. IEEE Communications Surveys Tutorials, 2020, 22(4): 2462-2488.
[5] KANG Y, HAUSWALD J, GAO C, et al. Neurosurgeon: collaborative intelligence between the cloud and mobile edge[C]//Proceedings of the 22nd International Conference on Architectural Support for Programming Languages and Operating Systems, 2017: 615-629.
[6] SHAO J, ZHANG J. Communication computation trade-off in resource constrained edge inference[J]. IEEE Communications Magazine, 2020, 58(12): 20-26.
[7] HU C, BAO W, WANG D, et al. Dynamic adaptive DNN surgery for inference acceleration on the edge[C]//Proceedings of the IEEE Conference on Computer Communications, 2019: 1423-1431.
[8] SHI W, HOU Y, ZHOU S, et al. Improving device edge cooperative inference of deep learning via 2-step pruning[J]. arXiv:1903. 03472, 2019.
[9] LIU G, DAI F, XU X, et al. An adaptive DNN inference acceleration framework with end-edge-cloud collaborative computing[J]. Future Generation Computer Systems, 2023, 140: 422-435.
[10] XUE M, WU H, LI R, et al. EosDNN: an efficient offloading scheme for DNN inference acceleration in local-edge-cloud collaborative environments[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 248-264.
[11] SU Y, FAN W, GAO L, et al. Joint DNN partition and resource allocation optimization for energy-constrained hierarchical edge-cloud systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3930-3944.
[12] XIAO Y, XIAO L, WAN K, et al. Reinforcement learning based energy efficient collaborative inference for mobile edge computing[J]. IEEE Transactions on Communications, 2023, 71(2): 864-876.
[13] CHEN X, ZHANG J, LIN B, et al. Energy-efficient offloading for DNN based smart IoT systems in cloud-edge environments[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 683-697.
[14] XUE M, WU H, PENG G, et al. DDPQN: an efficient DNN offloading strategy in local-edge-cloud collaborative environments[J]. IEEE Transactions on Services Computing, 2022, 15(2): 640-655.
[15] WANG X, WANG S, LIANG X, et al. Deep reinforcement learning: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(4): 5064-5078.
[16] DAI Y, ZHANG K, MAHARJAN S, et al. Edge intelligence for energy efficient computation offloading and resource allocation in 5G beyond[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12175-12186.
[17] UHLENBECK G E, ORNSTEIN L S. On the theory of the Brownian motion[J]. Physical Review, 1930, 36: 823-841.
[18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large scale image recognition[J]. arXiv:1409. 1556, 2014.
[20] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[21] GIRSHICK R B. Fast R-CNN[J]. arXiv:1504.08083, 2015.
[22] REDMON, JOSEPH, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 6517-6525.
[23] LI Q, WANG S, ZHOU A, et al. QoS driven task offloading with statistical guarantee in mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2022, 21(1): 278-290.
[24] WU H, WOLTER K, JIAO P, et al. EEDTO: an energy efficient dynamic task offloading algorithm for blockchain enabled IoT-edge-cloud orchestrated computing[J]. IEEE Internet of Things Journal, 2021, 8(4): 2163-2176.
[25] GHOLIPOUR N, ASSUN??O M D, AGARWAL P, et al. TPTO: a Transformer-PPO based task offloading solution for edge computing environments[C]//Proceedings of the IEEE 29th International Conference on Parallel and Distributed Systems, 2023: 1115-1122.
[26] LI J, LIU Q, WU P, et al. Task offloading for UAV based mobile edge computing via deep reinforcement learning[C]//Proceedings of the 2018 IEEE/CIC International Conference on Communications in China, 2018: 798-802.
[27] CHENG N, LYU F, QUAN W, et al. Space/aerial assisted computing offloading for IoT applications: a learning based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117-1129. |