[1] 罗仕华, 胡维昊, 刘雯, 等. 中国2060碳中和能源系统转型路径研究[J]. 中国科学: 技术科学, 2024, 54(1): 43-64.
LUO S H, HU W H, LIU W, et al. Transition pathway for China to achieve carbon neutrality by 2060[J]. Scientia Sinica (Technologica), 2024, 54(1): 43-64.
[2] KHATIB T, IBRAHIM I A, MOHAMED A. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system[J]. Energy Conversion and Management, 2016, 120: 430-448.
[3] CHU B, FAN D, LI W L, et al. Organic-film photovoltaic cell with electroluminescence[J]. Applied Physics Letters, 2002, 81(1): 10-12.
[4] AKRAM M W, LI G, JIN Y, et al. CNN based automatic detection of photovoltaic cell defects in electroluminescence images[J]. Energy, 2019, 189: 116319.
[5] REN Z, FANG F, YAN N, et al. State of the art in defect detection based on machine vision[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(2): 661-691.
[6] SU B, CHEN H, CHEN P, et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network[J]. IEEE Transactions on Industrial Informatics, 2020, 17(6): 4084-4095.
[7] SU B, CHEN H, ZHOU Z. BAF-detector: an efficient CNN-based detector for photovoltaic cell defect detection[J]. IEEE Transactions on Industrial Electronics, 2021, 69(3): 3161-3171.
[8] 蒋尚俊, 易辉, 李红涛, 等. 基于迁移学习与ResNet的太阳电池缺陷检测方法[J]. 太阳能学报, 2023, 44(7): 116-121.
JIANG S J, YI H, LI H T, et al. Defect detection method of solar cells based on transfer learning and ResNet[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 116-121.
[9] 田浩, 周强, 贺晨龙. 基于多尺度特征融合的光伏组件缺陷检测[J]. 计算机工程与应用, 2024, 60(3): 340-347.
TIAN H, ZHOU Q, HE C L. Defect detection of photovoltaic modules based on multi-scale feature fusion[J]. Computer Engineering and Applications, 2024, 60(3): 340-347.
[10] 曾志超, 徐玥, 王景玉, 等. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744.
ZENG Z C, XU Y, WANG J Y, et al. A water surface target detection algorithm based on SOE-YOLO lightweight network[J]. Journal of Graphics, 2024, 45(4): 736-744.
[11] 谢林森, 朱文忠, 谢康康, 等. 基于改进YOLOv5s的光伏电池EL缺陷图像检测模型[J]. 国外电子测量技术, 2023, 42(6): 93-102.
XIE L S, ZHU W Z, XIE K K, et al. Improved YOLOv5s-based image detection model for EL defects in photovoltaic cells[J]. Foreign Electronic Measurement Technology, 2023, 42(6): 93-102.
[12] 周颖, 颜毓泽, 陈海永, 等. 基于改进YOLOv8的光伏电池缺陷检测[J]. 激光与光电子学进展, 2024, 61(8): 0812008.
ZHOU Y, YAN Y Z, CHEN H Y, et al. Defect detection of photovoltaic cells based on improved YOLOv8[J]. Laser & Optoelectronics Progress, 2024, 61(8): 0812008.
[13] WANG A, CHEN H, LIN Z, et al. RepVIT: revisiting mobile CNN from VIT perspective[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 15909-15920.
[14] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[15] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352.
[16] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[18] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[19] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[20] FENG C, ZHONG Y, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 3490-3499.
[21] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[22] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems, 2020: 21002-21012.
[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[24] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[25] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[26] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[J]. arXiv:1606.08415, 2016.
[27] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[28] RUKUNDO O, CAO H. Nearest neighbor value interpolation[J]. arXiv:1211.1768, 2012.
[29] SU B, ZHOU Z, CHEN H. PVEL-AD: a large-scale open-world dataset for photovoltaic cell anomaly detection[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 404-413.
[30] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5.
[31] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[32] MA X, DAI X, BAI Y, et al. Rewrite the stars[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 5694-5703. |