[1] 张芹, 孙永明, 夏水斌, 等. 自动化智能仓储系统的设计与可行性分析[J]. 计算机与数字工程, 2019, 47(10): 2451-2454.
ZHANG Q, SUN Y M, XIA S B, et al. Design and feasibility analysis of automated intelligent storage system[J]. Computer & Digital Engineering, 2019, 47(10): 2451-2454.
[2] 杜宇, 姜伟. 智能机器人仓储物流系统设计[J]. 组合机床与自动化加工技术, 2020(5): 164-168.
DU Y, JIANG W. Design of intelligent robot warehousing logistics system[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(5): 164-168.
[3] 赵永良, 付鑫, 吴尚远, 等. 基于计算机视觉的智能仓储图像识别系统设计与实现[J]. 电力信息与通信技术, 2019, 17(12): 31-36.
ZHAO Y L, FU X, WU S Y, et al. Design and implementation of intelligent warehouse image recognition system based on computer vision[J]. Electric Power Information and Communication Technology, 2019, 17(12): 31-36.
[4] 张晓芳, 许佳音, 王文博, 等. 箱体智能识别定位与引导方法研究[J]. 工程机械, 2022, 53(12): 1-7.
ZHANG X F, XU J Y, WANG W B, et al. Research on method of intelligent identification, positioning and guidance method for box[J]. Construction Machinery and Equipment, 2022, 53(12): 1-7.
[5] 路鹭, 杨炯, 梁杰, 等. 一种快速高精度的矩形检测算法[J]. 激光与光电子学进展, 2020, 57(18): 64-70.
LU L, YANG J, LIANG J, et al. Fast and high-precision rectangle detection algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(18): 64-70.
[6] 金卓鑫. 基于轮廓特征的仓储箱体识别与定位算法研究[D]. 武汉: 华中科技大学, 2020: 28-46.
JIN Z X. Research on recognition and location algorithm of warehouse box based on contour features[D]. Wuhan: Huazhong University of Science and Technology, 2020: 28-46.
[7] 王照华. 面向堆叠矩形物体的识别与抓取方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 21-35.
WANG Z H. Research on recognition and grasping method of stacked rectangular objects[D]. Harbin: Harbin Institute of Technology, 2019: 21-35.
[8] 李天剑, 黄斌, 刘江玉, 等. 卷积神经网络物体检测算法在物流仓库中的应用[J]. 计算机工程, 2018, 44(6): 176-181.
LI T J, HUANG B, LIU J Y, et al. Application of convolution neural network object detection algorithm in logistics warehouse[J]. Computer Engineering, 2018, 44(6): 176-181.
[9] 李映松, 杨爱英, 刘轩, 等. 基于Transformer改进的Faster-RCNN仓储箱体检测算法[J]. 自动化与仪器仪表, 2022(8): 1-6.
LI Y S, YANG A Y, LIU X, et al. Storage box detection method based on transformer improved Faster-RCNN[J]. Automation & Instrumentation, 2022(8): 1-6.
[10] SHI P, ZHAO Z, FAN X, et al. Remote sensing image object detection based on angle classification[J]. IEEE Access, 2021, 9: 118696-118707.
[11] 韩兴, 刘晓平, 王刚, 等. 基于深度神经网络复杂场景下的机器人拣选方法[J]. 北京邮电大学学报, 2019, 42(5): 22-28.
HAN X, LIU X P, WANG G, et al. Robotic sorting method in complex scene based on deep neural network[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(5): 22-28.
[12] 邹汶材, 刘宝临. 基于图像实例分割的机器人箱体拆垛方法[J]. 计算机工程与应用, 2024, 60(10): 209-216.
ZOU W C, LIU B L. Robot box depalletizing method based on image instance segmentation[J]. Computer Engineering and Applications, 2024, 60(10): 209-216.
[13] YANG X, YANG J, YAN J, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8231-8240.
[14] QIAN W, YANG X, PENG S, et al. Learning modulated loss for rotated object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2458-2466.
[15] YANG X, YANG X, YANG J, et al. Learning high-precision bounding box for rotated object detection via Kullback-Leibler divergence[C]//Advances in Neural Information Processing Systems 34, 2021: 18381-18394.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[17] PAN X, REN Y, SHENG K, et al. Dynamic refinement network for oriented and densely packed object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11204-11213.
[18] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[19] MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 122-138.
[20] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[21] ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9300-9308.
[22] XU Y, FU M, WANG Q, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452-1459.
[23] YANG X, YAN J, FENG Z, et al. R3Det: refined single-stage detector with feature refinement for rotating object[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171.
[24] ZHU M, HU G, ZHOU H, et al. Arbitrary-oriented ship detection based on RetinaNet for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6694-6706.
[25] XIE X, CHENG G, WANG J, et al. Oriented R-CNN for object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3500-3509.
[26] BOLYA D, ZHOU C, XIAO F, et al. YOLACT: real-time instance segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9156-9165. |