[1] ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3708-3712.
[2] HUANG H W, LI Q T, ZHANG D M, et al. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176.
[3] LIAO J H, YUE Y H, ZHANG D J, et al. Automatic tunnel crack inspection using an efficient mobile imaging module and a lightweight CNN[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15190-15203.
[4] 徐志刚, 赵祥模, 宋焕生, 等. 基于直方图估计和形状分析的沥青路面裂缝识别算法[J]. 仪器仪表学报, 2010, 31(10): 2260-2266.
XU Z G, ZHAO X M, SONG H S, et al. Asphalt pavement crack recognition algorithm based on histogram estimation and shape analysis[J]. Chinese Journal of Scientific Instrument, 2010, 31(10): 2260-2266.
[5] LIM R S, LA F M, SHENG W. A robotic crack inspection and apping system for bridge deck maintenance[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 367-378.
[6] ABDEL-QADER L, ABUDAYYEH O, KELLY M E, et al. Analysis of edge-detection techniques for crack identification in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 255-263.
[7] PENG C, YANG M Q, ZHENG Q H, et al. A triple-thresholds pavement crack detection method leveraging random structured forest[J]. Construction and Building Materials, 2020, 263: 950-618.
[8] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39: 640-651.
[9] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39: 2481-2495.
[10] RONNEBERGER O, FISCHER P, BROX T. UNet: convo-lutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[11] CHEN L C, PAPANDREOU I, KOKKINOS K, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40: 834-848.
[12] ZOU Q, ZHANG Z, LI Q, et al. DeepCrack: learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2019, 28: 1498-1512.
[13] YANG F, ZHANG L, YU S, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21: 1525-1535.
[14] DONG H, SONG K, HE Y, et al. PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2019, 16: 7448-7458.
[15] 常惠, 绕志强, 赵玉林, 等. 基于改进U-Net网络的隧道裂缝分割算法研究[J]. 计算机工程与应用, 2021, 57(22): 215-222.
CHANG H, RAO Z Q, ZHAO Y L, et al. Research on tunnel crack segmentation algorithm based on improved U-Net network[J]. Computer Engineering and Applications, 2021, 57(22): 215-222.
[16] GUO J M, MARKONI H, LEE I D, et al. BARNet: boundary aware refinement network for crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23: 7343-7358.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[18] WANG H, CAO P, WANG J, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 2441-2449.
[19] WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6450-6458.
[20] ZHANG D, ZHENG Z, LI M, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[21] ZHOU Q, QU Z, LI Y, et al. Tunnel crack detection with linear seam based on mixed attention and multiscale feature fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5014711.
[22] OJALA T, PIETIKAAINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 21: 51-59.
[23] ZHOU W J, FEI M R, ZHOU H Y, et al. A sparse representation based fast detection method for surface detect detection of bottle caps[J]. Neurocomputing, 2014, 123: 406-414.
[24] LIU X, XUE F, TENG L. Surface defect detection based on gradient LBP[C]//Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing. Piscataway: IEEE, 2018: 133-137.
[25] OKTAY O, SCHLEMPER J, FOLGOC L. Attention U-Net: learning where to look for the pancreas[J]. arXiv:1804.03999, 2018. |