[1] 张新香, 段燕红. 基于学习者在线评论文本的MOOC质量评判——以“中国大学MOOC”网的在线评论文本为例[J]. 现代教育技, 2020, 30(9): 56-63.
ZHANG X X, DUAN Y H. MOOC quality evaluation based on learners online review texts—taking the online review texts from the “China university MOOC” website as examples[J]. Modern Educational Technology, 2020, 30(9): 56-63.
[2] LIAO J, WANG M, CHEN X, et al. Dynamic commonsense knowledge fused method for Chinese implicit sentiment analysis[J]. Information Processing & Management, 2022, 59(3): 102934-102949.
[3] LIAO J, WANG S, LI D. Identification of fact- implied implicit sentiment based on multi-level semantic fused representation[J]. Knowledge- Based Systems, 2019, 165: 197-207.
[4] WANG J, LI X, HE J, et al. Enhancing implicit sentiment learning via the incorporation of part-of-speech for aspect-based sentiment analysis[C]//Proceedings of the China National Conference on Chinese Computational Linguistics, 2023: 382-399.
[5] YANG S, XING L, LI Y, et al. Implicit sentiment analysis based on graph attention neural network[J]. Engineering Reports, 2022, 4(1): 12452-12468.
[6] DENG C, LAI G, DENG H. Improving word vector model with part-of‐speech and dependency grammar information[J]. CAAI Transactions on Intelligence Technology, 2020, 5(4): 276-282.
[7] SUHROB E, VASILA K. Parts of speech and sentence structure in English grammar[J]. Galaxy International Interdisciplinary Research Journal, 2022, 10(7): 156-160.
[8] 杨春霞, 韩煜, 陈启岗, 等. 基于BERT与注意力机制的方面级隐式情感分析模型[J]. 南京信息工程大学学报(自然科学版), 2023, 15(5): 551-560.
YANG CX, HAN Y, CHEN Q G, et al. Aspect-based implicit sentiment analysis model based on BERT and attention mechanism[J]. Journal of Nanjing University of Information Science & Technology(Nature Sciences), 2023, 15(5): 551-560.
[9] BERARAFA H, BENKHALIFA M, AKHLOUFI M. WordNet semantic relations based enhancement of KNN model for implicit aspect identification in sentiment analysis[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 3-17.
[10] QIAN Y, WANG J, LI D, et al. Interactive capsule network for implicit sentiment analysis[J]. Applied Intelligence, 2023, 53(3): 3109-3123.
[11] ZHANG L, LIU B. Identifying noun product features that imply opinions[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011: 575-580.
[12] LIU B. Sentiment analysis and opinion mining[M]. Cham: Springer , 2012.
[13] CHOI Y, WIEBE J. +/-effectwordnet: senselevel lexicon acquisition for opinion inference[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1181-1191.
[14] 谈光璞, 朱广丽, 韦斯羽. 基于情感特征增强的中文隐式情感分类模型[J]. 计算机工程与应用, 2024, 60(3): 196-204.
TAN G P , ZHU G L , WEI S Y. Implicit sentiment classification model based on enhancement of sentiment features oriented to Chinese text[J]. Computer Engineering and Applications, 2024, 60(3): 196-204.
[15] SU C, LI J, PENG Y, et al. Implicit mood computing via LSTM and semantic mapping[J] Soft Computing, 2020, 24: 15795-15809.
[16] WEI J, LIAO J, YANG Z, et al. BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis[J]. Neurocomputing, 2020, 383: 65-173.
[17] YIN W, SHANG L. ContextBERT: enhanced implicit sentiment analysis using implicit- sentiment-query attention[C]//Proceedings of the 2022 International Joint Conference on Neural Networks, 2022: 1-8.
[18] GREENE S, RESNIK P. More than words: syntactic packaging and implicit sentiment[C]//Proceedings of the Human Language Technologies: the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2009: 503-511.
[19] FU L, LIU S. A syntax-based BSGCN model for Chinese implicit sentiment analysis with multi-classification[C]//Proceedings of the 2022 IEEE 16th International Conference on Application of Information and Communication Technologies, 2022: 1-7.
[20] LI R, CHEN H, FENG F, et al. DualGCN: exploring syntactic and semantic information for aspect-based sentiment analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6): 7642-7656.
[21] 田继帅, 艾芳菊. 基于增强句法信息与多特征图卷积融合的方面级情感分析[J/OL]. 计算机科学与探索: 1-15 [2024-07-25]. http://kns.cnki.net/kcms/detail/11.5602.tp.20240724.115
3.006.html.
TIAN J S, AI F J. Aspect-level sentiment analysis based on enhanced syntactic information and multi-feature graph convolutional fusion[J/OL]. Journal of Frontiers of Computer Science and Technology: 1-15[2024-07-25]. http://kns.cnki.net/kcms/detail/11.5602.tp.20240724.1153.006.html.
[22] XU M, WANG D, FENG S, et al. KC-ISA: an implicit sentiment analysis model combining knowledge enhancement and context features[C]//Proceedings of the 29th International Conference on Computational Linguistics, 2022: 6906-6915.
[23] AHMED M, PAN S, SU J, et al. BERT-ASC: implicit aspect representation learning through auxiliary-sentence construction for sentiment analysis[J]. arXiv:2203.11702, 2022.
[24] WANG H, HOU M. Quantum-like implicit sentiment analysis with sememes knowledge[J]. Expert Systems with Applications, 2023, 232: 120720-120729.
[25] YING Z, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[J]. arXiv:1806.08804, 2018.
[26] DONG Z, DONG Q. HowNet a hybrid language and knowledge resource[C]//Proceedings of the International Conference on Natural Language Processing and Knowledge Engineering, 2003: 820-824.
[27] RONG Y, HUANG W, XU T, et al. Dropedge: towards deep graph convolutional networks on node classification[J]. arXiv:1907.10903, 2019.
[28] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 207-212.
[29] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 562-570. |