[1] BENGIO Y. Deep learning of representations: looking forward[C]//Proceedings of the International Conference on Statistical Language and Speech Processing, 2013: 1-37.
[2] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning, 2020: 1597-1607.
[3] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[4] CHEN L, LI J, PENG Q, et al. Understanding structural vulnerability in graph convolutional networks[J]. arXiv:2108.
06280, 2021.
[5] VELI?KOVI? P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[J]. arXiv:1809.10341, 2018.
[6] PAN S, HU R, LONG G, et al. Adversarially regularized graph autoencoder for graph embedding[J]. arXiv:1802.04407, 2018.
[7] TAN Q, ZHANG X, LIU N, et al. Bring your own view: graph neural networks for link prediction with personalized subgraph selection[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023: 625-633.
[8] QIU J, CHEN Q, DONG Y, et al. GCC: graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 1150-1160.
[9] THAKOOR S, TALLEC C, AZAR M G, et al. Large-scale representation learning on graphs via bootstrapping[J]. arXiv:2102.06514, 2021.
[10] YOU Y, CHEN T, SUI Y, et al. Graph contrastive learning with augmentations[C]//Advances in Neural Information Processing Systems, 2020: 5812-5823.
[11] KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016.
[12] XU D, CHENG W, LUO D, et al. InfoGCL: information-aware graph contrastive learning[C]//Advances in Neural Information Processing Systems, 2021: 30414-30425.
[13] HASSANI K, KHASAHMADI A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of the International Conference on Machine Learning, 2020: 4116-4126.
[14] LEE N, LEE J, PARK C. Augmentation-free self-supervised learning on graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 7372-7380.
[15] YOU Y, CHEN T, SHEN Y, et al. Graph contrastive learning automated[C]//Proceedings of the International Conference on Machine Learning, 2021: 12121-12132.
[16] WU L, LIN H, TAN C, et al. Self-supervised learning on graphs: contrastive, generative, or predictive[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(4): 4216-4235.
[17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[18] TAN Q, LIU N, HUANG X, et al. MGAE: masked autoencoders for self-supervised learning on graphs[J]. arXiv:2201.
02534, 2022.
[19] MENG Z, LIANG S, BAO H, et al. Co-embedding attributed networks[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019: 393-401.
[20] HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 16000-16009.
[21] CHEN T, SUI Y, CHEN X, et al. A unified lottery ticket hypothesis for graph neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 1695-1706.
[22] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701-710.
[23] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 855-864.
[24] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems, 2017.
[25] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the International Conference on Learning Representations, 2017.
[26] TAN Q, LIU N, HUANG X, et al. S2GAE: self-supervised graph autoencoders are generalizable learners with graph masking[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023: 787-795.
[27] YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 974-983.
[28] HOU Z, LIU X, CEN Y, et al. Graphmae: self-supervised masked graph autoencoders[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 594-604.
[29] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[J]. arXiv:1810.00826, 2018.
[30] LI J, WU R, SUN W, et al. MaskGAE: masked graph modeling meets graph autoencoders[J]. arXiv:2205.10053, 2022.
[31] MAVROMATIS C, KARYPIS G. Graph infoclust: maximizing coarse-grain mutual information in graphs[C]//Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2021: 541-553.
[32] HU Z, DONG Y, WANG K, et al. GPT-GNN: generative pre-training of graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 1857-1867.
[33] ZHU Q, DU B, YAN P. Self-supervised training of graph convolutional networks[J]. arXiv:2006.02380, 2020. |