[1] 曹书林, 史佳欣, 侯磊, 等. 知识库问答研究进展与展望[J]. 计算机学报, 2023, 46(3): 512-539.
CAO S L, SHI J X, HOU L, et al. Question answering over knowledge base: an overview[J]. Chinese Journal of Computers, 2023, 46(3): 512-539.
[2] 刘昀抒, 申彦明, 齐恒, 等. 基于层次结构图的多跳知识图谱问答模型[J]. 计算机工程, 2024, 50(1): 101-109.
LIU Y S, SHEN Y M, QI H, et al. Multi-hop knowledge base question answering model based on hierarchical structure graph[J]. Computer Engineering, 2024, 50(1): 101-109.
[3] SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 4498-4507.
[4] CHEN Z Y, CHANG C H, CHEN Y P, et al. UHop: an unrestricted-hop relation extraction framework for knowledge-based question answering[J]. arXiv:1904.01246, 2019.
[5] LAN Y, WANG S, JIANG J. Knowledge base question answering with topic units[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019: 5046-5052.
[6] SHU Y, YU Z, LI Y, et al. Tiara: multi-grained retrieval for robust question answering over large knowledge bases[J]. arXiv:2210.12925, 2022.
[7] YU D, ZHANG S, NG P, et al. DecAF: joint decoding of answers and logical forms for question answering over knowledge bases[J]. arXiv:2210.00063, 2022.
[8] HU X, WU X, SHU Y, et al. Logical form generation via multi-task learning for complex question answering over knowledge bases[C]//Proceedings of the 29th International Conference on Computational Linguistics, 2022: 1687-1696.
[9] 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6): 16-29.
WEN S, QIAN L, HU M, et al. Review of research progress on question-answering techniques based on large language models[J]. Data Analysis and Knowledge Discovery, 2024, 8(6): 16-29.
[10] BROWN T B. Language models are few-shot learners[J]. arXiv:2005.14165, 2020.
[11] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[J]. arXiv:2302.13971, 2023.
[12] YASUNAGA M, REN H, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering[J]. arXiv:2104.06378, 2021.
[13] LUO H R, E H H, TANG Z C, et al. ChatKBQA: a generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models[J]. arXiv:2310.08975, 2023.
[14] BHUTANI N, ZHENG X, JAGADISH H V. Learning to answer complex questions over knowledge bases with query composition[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 739-748.
[15] 冯钧, 李艳, 杭婷婷. 问答系统中复杂问题分解方法研究综述[J]. 计算机工程与应用, 2022, 58(17): 23-33.
FENG J, LI Y, HANG T T. Survey on question decomposition method in question answering system[J]. Computer Engineering and Applications, 2022, 58(17): 23-33.
[16] 萨日娜, 李艳玲, 林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索, 2022, 16(8): 1727-1741.
SA R N, LI Y L, LIN M. Survey of question answering based on knowledge graph reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1727-1741.
[17] GARCíA-DURáN A, DUMAN?I? S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion[J]. arXiv:1809.03202, 2018.
[18] CHEN X, HU Z, SUN Y. Fuzzy logic based logical query answering on knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 3939-3948.
[19] 刘杰, 尚学群, 宋凌云, 等. 图神经网络在复杂图挖掘上的研究进展[J]. 软件学报, 2022, 33(10): 3582-3618.
LIU J, SHANG X Q, SONG L Y, et al. Progress of graph neural networks in complex graph mining[J]. Journal of Software, 2022, 33(10): 3582-3618.
[20] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[J]. arXiv:1911.03082, 2019.
[21] REN H, HU W, LESKOVEC J. Query2box: reasoning over knowledge graphs in vector space using box embeddings[J]. arXiv:2002.05969, 2020.
[22] HU Z, WANG L, LAN Y, et al. LLM-adapters: an adapter family for parameter-efficient fine-tuning of large language models[J]. arXiv:2304.01933, 2023.
[23] GOTTWALD S. Fuzzy sets and fuzzy logic: the foundations of application from a mathematical point of view[M]. [S.l.]: Springer-Verlag, 2013.
[24] ZHU Z, GALKIN M, ZHANG Z, et al. Neural-symbolic models for logical queries on knowledge graphs[C]//Proceedings of the International Conference on Machine Learning, 2022: 27454-27478.
[25] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008: 1247-1250. |