[1] 李宇杰, 李煊鹏, 张为公. 基于视觉的三维目标检测算法研究综述[J]. 计算机工程与应用, 2020, 56(1): 11-24.
LI Y J, LI X P, ZHANG W G. Survey on vision-based 3D object detection methods[J]. Computer Engineering and Applications, 2020, 56(1): 11-24.
[2] 肖雨晴, 杨慧敏. 目标检测算法在交通场景中应用综述[J]. 计算机工程与应用, 2021, 57(6): 30-41.
XIAO Y Q, YANG H M. Research on application of object detection algorithm in traffic scene[J]. Computer Engineering and Applications, 2021, 57(6): 30-41.
[3] 周燕, 蒲磊, 林良熙, 等. 激光点云的三维目标检测研究进展[J]. 计算机科学与探索, 2022, 16(12): 2695-2717.
ZHOU Y, PU L, LIN L X et al. Research progress on 3D object detection of LiDAR point cloud[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2695-2717.
[4] 陆慧敏, 杨朔. 基于深度神经网络的自动驾驶场景三维目标检测算法[J]. 北京工业大学学报, 2022, 48(6): 589-597.
LU H M, YANG S. Three-dimensional object detection algorithm based on deep neural networks for automatic driving[J]. Journal of Beijing University of Technology, 2022, 48(6): 589-597.
[5] ARNOLD E, AL-JARRAH O Y, DIANATI M, et al. A survey on 3D object detection methods for autonomous driving applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3782-3795.
[6] QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[7] QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017.
[8] SHI W, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1711-1719.
[9] KUANG H, WANG B, AN J, et al. Voxel-FPN: multi-scale voxel feature aggregation for 3D object detection from LIDAR point clouds[J]. Sensors, 2020, 20(3): 704.
[10] HE C, ZENG H, HUANG J, et al. Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11873-11882.
[11] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
[12] WANG L, SONG Z, ZHANG X, et al. SAT-GCN: self-attention graph convolutional network-based 3D object detection for autonomous driving[J]. Knowledge-Based Systems, 2023, 259: 110080.
[13] 许鑫冉, 王腾宇, 鲁才. 图神经网络在知识图谱构建与应用中的研究进展[J]. 计算机科学与探索, 2023, 17(10): 2278-2299.
XU X R, WANG T Y, LU C. Research progress of graph neural network in knowledge graph construction and application[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2278-2299.
[14] RUSCH T K, BRONSTEIN M M, MISHRA S. A survey on oversmoothing in graph neural network[J]. arXiv:2303. 10993, 2023.
[15] SHI S, JIANG L, DENG J, et al. PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection[J]. International Journal of Computer Vision, 2023, 131(2): 531-551.
[16] 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260.
CHE Y L, YUAN L, SUN L H. 3D object detection based on strong semantic key point sampling[J]. Computer Engineering and Applications, 2024, 60(9): 254-260.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[18] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[19] YANG H, LIU Z, WU X, et al. Graph R-CNN: towards accurate 3D object detection with semantic-decorated local graph[C]//Proceedings of the European Conference on Computer Vision, 2022: 662-679.
[20] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics (TOG), 2019, 38(5): 1-12.
[21] 张婷, 张兴忠, 王慧民, 等. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336.
ZHANG T, ZHANG X Z, WANG H M, et al. 3D object detection in substation scene based on graph neural network[J]. Computer Engineering and Applications, 2023, 59(9): 329-336.
[22] 李克文, 柯翠虹, 张敏, 等. 增强局部注意力的时间序列分类方法[J]. 计算机工程与应用, 2024, 60(1): 189-197.
LI K W, KE C H, ZHANG M, et al. Time series classification method with local attention enhancement[J]. Computer Engineering and Applications, 2024, 60(1): 189-197.
[23] MISRA I, GIRDHAR R, JOULIN A. An end-to-end transformer model for 3D object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2906-2917.
[24] LAI X, LIU J, JIANG L, et al. Stratified transformer for 3D point cloud segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8500-8509.
[25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[26] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[27] BELKIN M, NIYOGI P. Semi-supervised learning on riemannian manifolds[J]. Machine Learning, 2004, 56: 209-239.
[28] MA X, OUYANG W, SIMONELLI A, et al. 3D object detection from images for autonomous driving: a survey[J]. arXiv:2202.02980, 2022.
[29] TEAM O D. OpenPCDet: an open-source toolbox for 3D object detection from point clouds[EB/OL]. (2020). https://github.com/open-mmlab/OpenPCDet.
[30] LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705.
[31] YAN Y, MAO Y, LI B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[32] SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779.
[33] YANG Z, SUN Y, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11040-11048.
[34] ZHANG Y, HU Q, XU G, et al. Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18953-18962.
[35] SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.
[36] HE Q, WANG Z, ZENG H, et al. Stereo RGB and deeper LIDAR-based network for 3D object detection in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(1): 152-162.
[37] PANG S, MORRIS D, RADHA H. Fast-CLOCs: fast camera-LiDAR object candidates fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022: 187-196.
[38] LI X, SHI B, HOU Y, et al. Homogeneous multi-modal feature fusion and interaction for 3D object detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 691-707.
[39] RUSCH T K, CHAMBERLAIN B, ROWBOTTOM J, et al. Graph-coupled oscillator networks[C]//Proceedings of the International Conference on Machine Learning, 2022: 18888-18909. |