[1] BAKER S, KANADE T. Hallucinating faces[C]//Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, 2000: 83-88.
[2] LIU C, SHUM H Y, ZHANG C S. A two-step approach to hallucinating faces: global parametric model and local nonparametric model[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.
[3] SIU W C, HUNG K W. Review of image interpolation and super-resolution[C]//Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, 2012: 1-10.
[4] CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
[5] WANG X, TANG X. Hallucinating face by eigentransformation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(3): 425-434.
[6] CHUDASAMA V, NIGHANIA K, UPLA K, et al. E-ComSup
ResNet: enhanced face super-resolution through compact network[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(2): 166-179.
[7] JIANG K, WANG Z, YI P, et al. Dual-path deep fusion network for face image hallucination[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 33(1): 378-391.
[8] CHEN C, LI X, YANG L, et al. Progressive semantic-aware style transformation for blind face restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11896-11905.
[9] CHEN Y, TAI Y, LIU X, et al. FSRNet: end-to-end learning face super-resolution with facial priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2492-2501.
[10] WANG C, ZHONG Z, JIANG J, et al. Parsing map guided multi-scale attention network for face hallucination[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing , 2020: 2518-2522.
[11] LI X, CHEN C, ZHOU S, et al. Blind face restoration via deep multi-scale component dictionaries[C]//Proceedings of the European Conference on Computer Vision, 2020: 399-415.
[12] LI X, LI W, REN D, et al. Enhanced blind face restoration with multi-exemplar images and adaptive spatial feature fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2706-2715.
[13] WANG K, ORAMAS J, TUYTELAARS T. Multiple exemplars-based hallucination for face super-resolution and editing[C]//Proceedings of the Asian Conference on Computer Vision, 2020: 258-273.
[14] ZHU S, LIU S, LOY C C, et al. Deep cascaded bi-network for face hallucination[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 614-630.
[15] BULAT A, TZIMIROPOULOS G. Super-FAN: integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 109-117.
[16] MA C, JIANG Z, RAO Y, et al. Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5569-5578.
[17] YU X, FERNANDO B, GHANEM B, et al. Face super-resolution guided by facial component heatmaps[C]//Proceedings of the European Conference on Computer Vision, 2018: 217-233.
[18] ZHOU E, FAN H, CAO Z, et al. Learning face hallucination in the wild[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 3871-3877.
[19] CHEN C, GONG D, WANG H, et al. Learning spatial attention for face super-resolution[J]. IEEE Transactions on Image Processing, 2020, 30: 1219-1231.
[20] ZENG K, WANG Z, LU T, et al. Self-attention learning network for face super-resolution[J]. Neural Networks, 2023, 160: 164-174.
[21] LU T, WANG Y, ZHANG Y, et al. Face hallucination via split-attention in split-attention network[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 5501-5509.
[22] WANG C, JIANG J, ZHONG Z, et al. Super-resolving face image by facial parsing information[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5(4): 435-448.
[23] ZHANG C, LIU Z. Face super-resolution with progressive embedding of multi-scale face priors[C]//Proceedings of the 2022 IEEE International Joint Conference on Biometrics, 2022: 1-8.
[24] ZHUANG C, LI M, ZHANG K, et al. Multi-level landmarguided deep network for face super-resolution[J]. NeuralNetworks, 2022, 152: 276-286.
[25] ZHANG Y, WU Y, CHEN L. MSFSR: a multi-stage face super-resolution with accurate facial representation via enhanced facial boundaries[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 504-505.
[26] HU X, REN W, YANG J, et al. Face restoration via plug-and-play 3D facial priors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 8910-8926.
[27] KALAROT R, LI T, PORIKLI F. Component attention guided face super-resolution network: Cagface[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 370-380.
[28] SHEN Z, LAI W S, XU T, et al. Exploiting semantics for face image deblurring[J]. International Journal of Computer Vision, 2020, 128(7): 1829-1846.
[29] YASARLA R, PERAZZI F, PATEL V M. Deblurring face images using uncertainty guided multi-stream semantic networks[J]. IEEE Transactions on Image Processing, 2020, 29: 6251-6263.
[30] YU Y, ZHANG P, ZHANG K, et al. Multiprior learning via neural architecture search for blind face restoration[J]. arXiv:2206.13962, 2023.
[31] WANG C, JIANG J, ZHONG Z, et al. Propagating facial prior knowledge for multitask learning in face super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7317-7331.
[32] MEI Y, FAN Y, ZHANG Y, et al. Pyramid attention network for image restoration[J]. International Journal of Computer Vision, 2023, 131(12): 3207-3225.
[33] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[34] YU C, WANG J, PENG C, et al. BiseNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 325-341.
[35] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[36] LIU Y, JIA Q, FAN X, et al. Cross-SRN: structure-preserving super-resolution network with cross convolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(8): 4927-4939.
[37] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[38] LIU Z, LUO P, WANG X, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 3730-3738.
[39] LE V, BRANDT J, LIN Z, et al. Interactive facial feature localization[C]//Proceedings of the 12th European Conference on Computer Vision, 2012: 679-692.
[40] BALTRU?AITIS T, ROBINSON P, MORENCY L P. Openface: an open source facial behavior analysis toolkit[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision, 2016: 1-10.
[41] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision, 2018: 286-301.
[42] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307. |