[1] 吴赛赛, 吴建寨, 程国栋, 等.基于姿态估计的动物行为识别研究进展[J].中国农业大学学报, 2023, 28(6):22-35.
WU S S, WU J Z, CHENG G D, et al. Research progress of animal behavior recognition based on pose estimation[J]. Journal of China Agricultural University, 2023, 28(6):22-35.
[2] 申通, 王硕, 李孟, 等.深度学习在动物行为分析中的应用研究进展[J].计算机科学与探索, 2024, 18(3): 612-626.
SHEN T, WANG S, LI M, et al. Research progress in application of deep learning in animal behavior analysis[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626.
[3] JIANG L, LEE C, TEOTIA D, et al. Animal pose estimation: a closer look at the state-of-the-art, existing gaps and opportunities[J]. Computer Vision and Image Understanding, 2022, 222:103483.
[4] 张宏鸣, 汪润, 董佩杰, 等.基于DeepSORT算法的肉牛多目标跟踪方法[J].农业机械学报, 2021, 52(4):248-256.
ZHANG H M, WANG R, DONG P J, et al. Beef cattle multi-target tracking based on DeepSORT algorithm[J].Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 248-256.
[5] 徐贵冬, 徐杨, 邓辉, 等.改进高分辨率网络的多目标动物姿态估计研究[J].计算机工程与应用, 2023, 59(22):182-192.
XU G D, XU Y, DENG H, et al. Research on multi-target animal pose estimation based on improved high resolution network[J].Computer Engineering and Applications, 2023, 59(22):182-192.
[6] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, 2016: 483-499.
[7] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7103-7112.
[8] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4510-4520.
[9] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7291-7299.
[10] ZHANG Z, TANG J, WU G. Simple and lightweight human pose estimation[J]. arXiv:1911.10346, 2019.
[11] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[12] CHENG B, XIAO B, WANG J, et al. HigherHRNet: scale-aware representation learning for bottom-up human poseestimation[C]//Proceedings of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition, 2020: 5386-5395.
[13] YU C, XIAO B, GAO C, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the IEEE/CVF Conference on Computervision and Pattern Recognition, 2021: 10440-10450.
[14] ZHANG H, ZU K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neuralnetwork[C]//Proceedings of the Asian Conference on Computer Vision, 2022: 1161-1177.
[15] LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162.
[16] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014:1653-1660.
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[19] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[20] LIU H, LIU F, FAN X, et al. Polarized self-attention: towards high-quality pixel-wise regression[J]. arXiv:2107.00782, 2021.
[21] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[22] LI Y, CHEN Y, DAI X, et al. MicroNet: improving image recognition with extremely low FLOPs[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 468-477.
[23] SINGH P, VERMA V K, RAI P, et al. HetConv: heterogeneous kernel-based convolutions for deep CNNs[C]//Proceedings of the IEEE/CVF Conference on Computer Visionand Pattern Recognition, 2019: 4835-4844.
[24] ZHANG Q, JIANG Z, LU Q, et al. Split to be slim: an overlooked redundancy in vanilla convolution[J]. arXiv:2006. 12085, 2020.
[25] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[26] QIU J, CHEN C, LIU S, et al. SlimConv:reducing channelredundancy in convolutional neural networks by features recombining[J].IEEE Transactions on Image Processing, 2021, 30:6434-6445.
[27] CHEN Y, FAN H, XU B, et al. Drop an octave:reducingspatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3435-3444.
[28] IANDOLA F N, HAN S, MOSKEWICZ M W, et al.SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size[J]. arXiv:1602.07360, 2016.
[29] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[30] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[31] YU H, XU Y, ZHANG J, et al. AP-10K:a benchmark for animal pose estimation in the wild[J]. arXiv:2108.12617, 2021.
[32] CAO J, TANG H, FANG H S, et al. Cross-domain adaptation for animal pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:9498-9507.
[33] 邓辉, 徐杨.融入注意力和密集连接的轻量型人体姿态估计[J].计算机工程与应用, 2022, 58(16):265-273.
DENG H, XU Y. Lightweight human pose estimation based on attention and dense connection[J].Computer Engineering and Applications, 2022, 58(16):265-273.
[34] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018:466-481.
[35] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[36] MA N, ZHANG X, ZHENG H T, et al. ShuffleNetv2: practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV), 2018: 116-131. |