[1] MARCOS-RAMIRO A, PIZARRO D, MARRON-ROMERA M, et al. Let your body speak: communicative cue extraction on natural interaction using RGBD data[J]. IEEE Transactions on Multimedia, 2015, 17(10): 1721-1732.
[2] ELKHOLY A, HUSSEIN M E, GOMAA W, et al. Efficient and robust skeleton-based quality assessment and abnormality detection in human action performance[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(1): 280-291.
[3] ANDRILUKA M, IQBAL U, INSAFUTDINOV E, et al. PoseTrack: a benchmark for human pose estimation and tracking[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 5167-5176.
[4] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 7103-7112.
[5] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 5686-5696.
[6] LI X, ZHONG Z, WU J, et al. Expectation-maximization attention networks for semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9166-9175.
[7] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 10778-10787.
[8] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 1653-1660.
[9] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 4724-4732.
[10] FANG H S, XIE S, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, 2017: 2353-2362.
[11] KE L, CHANG M C, QI H, et al. DetPoseNet: improving multi-person pose estimation via coarse-pose filtering[J]. IEEE Transactions on Image Processing, 2022, 31: 2782-2795.
[12] ZHANG T, LIAN J, WEN J, et al. Multi-person pose estimation in the wild: using adversarial method to train a top-down pose estimation network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 3919-3929.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[14] YANG S, QUAN Z, NIE M, et al. TransPose: keypoint localization via transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 2021: 11782-11792.
[15] LI Y, ZHANG S, WANG Z, et al. TokenPose: learning keypoint tokens for human pose estimation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 2021: 11293-11302.
[16] YUAN Y, FU R, HUANG L, et al. HRFormer: high-resolution transformer for dense prediction[J]. arXiv:2110.09408, 2021.
[17] PISHCHULIN L, INSAFUTDINOV E, TANG S, et al. DeepCut: joint subset partition and labeling for multi person pose estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 4929-4937.
[18] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[19] INSAFUTDINOV E, PISHCHULIN L, ANDRES B, et al. DeeperCut: a deeper, stronger, and faster multi-person pose estimation model[C]//Proceedings of the European Conference on Computer Vision (ECCV 2016). Cham: Springer International Publishing, 2016: 34-50.
[20] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 2017: 1302-1310.
[21] PAPANDREOU G, ZHU T, CHEN L C, et al. PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[C]//Proceedings of the European Conference on Computer Vision (ECCV 2018). Cham: Springer International Publishing, 2018: 282-299.
[22] KREISS S, BERTONI L, ALAHI A. PifPaf: composite fields for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 11969-11978.
[23] CHENG B, XIAO B, WANG J, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 5385-5394.
[24] LI J, WANG M. Multi-person pose estimation with accurate heatmap regression and greedy association[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5521-5535.
[25] NIE X, FENG J, XING J, et al. Pose partition networks for multi-person pose estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV 2018). Cham: Springer International Publishing, 2018: 705-720.
[26] JIN L, WANG X, NIE X, et al. Grouping by center: predicting centripetal offsets for the bottom-up human pose estimation[J]. IEEE Transactions on Multimedia, 2023, 25: 3364-3374.
[27] CHENG Y, AI Y, WANG B, et al. Bottom-up 2D pose estimation via dual anatomical centers for small-scale persons[J]. Pattern Recognition, 2023, 139: 109403.
[28] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV 2016). Cham: Springer International Publishing, 2016: 483-499.
[29] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 2017: 936-944.
[30] ZHOU T, YANG Y, WANG W. Differentiable multi-granlarity human parsing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8296-8310.
[31] WANG Y J, LUO Y M, BAI G H, et al. UformPose: a U-shaped hierarchical multi-scale keypoint-aware framework for human pose estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(4): 1697-1709.
[32] SHI L, ZHOU Y, WANG J, et al. Compact global association based adaptive routing framework for personnel behavior understanding[J]. Future Generation Computer Systems, 2023, 141: 514-525.
[33] XU J, LIU W, XING W, et al. MSPENet: multi-scale adaptive fusion and position enhancement network for human pose estimation[J]. The Visual Computer, 2023, 39(5): 2005-2019.
[34] WANG X, TONG J, WANG R. Attention refined network for human pose estimation[J]. Neural Processing Letters, 2021, 53(4): 2853-2872.
[35] YUE L, LI J, LIU Q. Body parts relevance learning via expectation?maximization for human pose estimation[J]. Multimedia Systems, 2021, 27(5): 927-939.
[36] 冯明文, 徐杨, 张永丹, 等. 结合动态分裂卷积和注意力的多尺度人体姿态估计[J].计算机工程与应用, 2024, 60(22): 219-229.
FENG M W, XU Y, ZHANG Y D, et al. Combining dynamic split convolutions and attention for multi-scale human pose estimation[J]. Computer Engineering and Applications, 2024, 60(22): 219-229.
[37] LIN T Y, MAIRE M, BELONGIE S, et al. Mi-crosoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision (ECCV 2014). Cham: Springer International Publishing, 2014: 740-755.
[38] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 3686-3693.
[39] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV 2018). Cham: Springer International Publishing, 2018: 472-487.
[40] SUN X, ADAMU M J, ZHANG R, et al. Pixel-coordinate-induced human pose high-precision estimation method[J]. Electronics, 2023, 12(7): 1648.
[41] ZHAO A, LI J, ZENG H, et al. DSPose: dual-space-driven keypoint topology modeling for human pose estimation[J]. Sensors, 2023, 23(17): 7626.
[42] PAVAO A, GUYON I, LETOURNEL A C, et al. CodaLab competitions: an open source platform to organize scientific challenges[J]. Journal of Machine Learning Research, 2023, 24(198):1-6.
[43] ZHANG F, ZHU X, DAI H, et al. Distribution-aware coordinate representation for human pose estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 7091-7100.
[44] HUANG J, ZHU Z, GUO F, et al. The devil is in the details: delving into unbiased data processing for human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 5699-5708.
[45] WANG R, WU W, WANG X. Enhancing multi-scale information exchange and feature fusion for human pose estimation[J]. The Visual Computer, 2023, 39(10): 4751-4765. |