[1] DENUIT M M. Risk apportionment and multiply monotone targets[J]. Mathematical Social Sciences, 2018, 92: 74-77.
[2] GONZáLEZ S, GARCíA S, LI S T, et al. Chain based sampling for monotonic imbalanced classification[J]. Information Sciences, 2019, 474: 187-204.
[3] LI Z, LIU G N, LI Q. Nonparametric KNN estimation with monotone constraints[J]. Econometric Reviews, 2017, 36(6/7/8/9): 988-1006.
[4] SANG B B, CHEN H M, LI T R, et al. Incremental approaches for heterogeneous feature selection in dynamic ordered data[J]. Information Sciences, 2020, 541: 475-501.
[5] üNAL F, B?RANT D, ?EKER ?. A new approach: semisupervised ordinal classification[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2021, 29(3): 1797-1820.
[6] GONZáLEZ S, HERRERA F, GARCíA S. Monotonic random forest with an ensemble pruning mechanism based on the degree of monotonicity[J]. New Generation Computing, 2015, 33(4): 367-388.
[7] 袁方, 杨有龙. 针对混合型分类数据改进的K-modes算法距离公式[J]. 计算机工程与应用, 2020, 56(6): 186-193.
YUAN F, YANG Y L. Improved distance formula of K-modes clustering algorithm for mixed categorical attribute data[J]. Computer Engineering and Applications, 2020, 56(6): 186-193.
[8] WANG X, ZHAI J H, CHEN J K, et al. Ordinal decision trees based on fuzzy rank entropy[C]//Proceedings of the 2015 International Conference on Wavelet Analysis and Pattern Recognition. Piscataway: IEEE, 2015: 208-213.
[9] POTHARST R, FEELDERS A J. Classification trees for problems with monotonicity constraints[J]. ACM SIGKDD Explorations Newsletter, 2002, 4(1): 1-10.
[10] SENGE R, HüLLERMEIER E. Top-down induction of fuzzy pattern trees[J]. IEEE Transactions on Fuzzy Systems, 2010, 19(2): 241-252.
[11] WU G D, ZHU Z W, HUANG P H. A TS-type maximizing-discriminability-based recurrent fuzzy network for classification problems[J]. IEEE Transactions on Fuzzy Systems, 2010, 19(2): 339-352.
[12] GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets methodology for sorting problems in presence of multiple attributes and criteria[J]. European Journal of Operational Research, 2002, 138(2): 247-259.
[13] CANO J R, GUTIéRREZ P A, KRAWCZYK B, et al. Monotonic classification: an overview on algorithms, performance measures and data sets[J]. Neurocomputing, 2019, 341: 168-182.
[14] CHEN C C, LI S T. Credit rating with a monotonicity-constrained support vector machine model[J]. Expert Systems with Applications, 2014, 41(16): 7235-7247.
[15] DOUMPOS M, ZOPOUNIDIS C. A multicriteria decision support system for bank rating[J]. Decision Support Systems, 2010, 50(1): 55-63.
[16] GENEST D, CHEIN M. A content-search information retrieval process based on conceptual graphs[J]. Knowledge and Information Systems, 2005, 8(3): 292-309.
[17] PILTAN M, SOWLATI T. A multi-criteria decision support model for evaluating the performance of partnerships[J]. Expert Systems with Applications, 2016, 45: 373-384.
[18] SCHALL D. A multi-criteria ranking framework for partner selection in scientific collaboration environments[J]. Decision Support Systems, 2014, 59: 1-14.
[19] SOUSA R, YEVSEYEVA I, COSTA J, et al. Multicriteria models for learning ordinal data: a literature review[M]//Artificial intelligence, evolutionary computing and metaheuristics. Berlin, Heidelberg: Springer, 2012: 109-138.
[20] VELIKOVA M, DANIELS H. Decision trees for monotone price models[J]. Computational Management Science, 2004, 1(3): 231-244.
[21] UNAL F, BIRANT D. Educational data mining using semi-supervised ordinal classification[C]//Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, 2021: 1-5.
[22] 王鑫, 王熙照, 陈建凯, 等. 有序决策树的比较研究[J]. 计算机科学与探索, 2013, 7(11): 1018-1025.
WANG X, WANG X Z, CHEN J K, et al. Comparative study on ordinal decision trees[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 1018-1025.
[23] HU Q H, CHE X J, ZHANG L, et al. Rank entropy-based decision trees for monotonic classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(11): 2052-2064.
[24] LIEVENS S, DE?BAETS B, CAO-VAN K. A probabilistic framework for the design of instance-based supervised ranking algorithms inanordinal setting[J]. Annals of Operations Research, 2008, 163(1): 115-142.
[25] BEN-DAVID A. Automatic generation of symbolic multiattribute ordinal knowledge-based DSSs: methodology and applications[J]. Decision Sciences, 1992, 23(6): 1357-1372.
[26] PEI S L, HU Q H. Partially monotonic decision trees[J]. Information Sciences, 2018, 424: 104-117.
[27] XU H, MA S, WANG W J. An ordered feature recognition method based on ranking separability[J]. Information Sciences, 2023, 648: 119518.
[28] ZHOU Z H, FENG J. Deep forest[J]. National Science Review, 2019, 6(1): 74-86.
[29] GUO Y, LIU S H, LI Z H, et al. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data[J]. BMC Bioinformatics, 2018, 19(5): 1-13.
[30] PANG M, TING K M, ZHAO P, et al. Improving deep forest by screening[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4298-4312.
[31] SUN Q S, ZENG S G, LIU Y, et al. A new method of feature fusion and its application in image recognition[J]. Pattern Recognition, 2005, 38(12): 2437-2448. |