[1] WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281.
[2] AHMED M S, COOK A R. Analysis of freeway traffic time-series data by using box-jenkins techniques[J], Transportation Research Board, 1979, 722: 1-9.
[3] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11.
[4] HUANG W H, SONG G J, HONG H K, et al. Deep architecture for traffic flow prediction: deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191-2201.
[5] FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction[C]//Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Piscataway: IEEE, 2016: 324-328.
[6] ZHANG J B, ZHENG Y, QI D K, et al. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 1655-1661.
[7] WU Y K, TAN H C, QIN L Q, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180.
[8] CAO X F, ZHONG Y H, ZHOU Y, et al. Interactive temporal recurrent convolution network for traffic prediction in data centers[J]. IEEE Access, 2017, 6: 5276-5289.
[9] ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
[10] YU B, YIN H T, ZHU Z X, et al. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 3634-3640.
[11] LI Y, YU R, SHAHABI C, LIU Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]//Proceedings of the 6th International Conference on Learning Representations, 2018: 1-16.
[12] ZHENG C P, FAN X L, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 1234-1241.
[13] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020: 914-921.
[14] 高榕, 万以亮, 邵雄凯, 等. 面向改进的时空Transformer的交通流量预测模型[J]. 计算机工程与应用, 2023, 59(7): 250-260.
GAO R, WAN Y L, SHAO X K, et al. Traffic flow forecasting model for improved spatio-temporal transformer[J]. Computer Engineering and Applications, 2023, 59(7): 250-260.
[15] YANG J M, PENG Z R, LIN L. Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and graph Laplacian regularized matrix factorization[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103228.
[16] CUI Z Y, LIN L F, PU Z Y, et al. Graph Markov network for traffic forecasting with missing data[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102671.
[17] FENG S Y, WEI S Q, ZHANG J B, et al. A macro-micro spatio-temporal neural network for traffic prediction[J]. Transportation Research Part C: Emerging Technologies, 2023, 156: 104331.
[18] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[19] WANG X, CUI P, WANG J, et al. Community preserving network embedding[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017: 203-209.
[20] ZHANG S, TONG H H, XU J J, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6(1): 11.
[21] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[22] WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 1907-1913.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems, 2017: 5998-6008.
[24] GUO Q, QIU X, LIU P, et al. Star-Transformer[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 1315-1325.
[25] AINSLIE J, ONTANON S, ALBERTI C, et al. ETC: encoding long and structured inputs in transformers[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 268-284.
[26] LOPEZ P A, BEHRISCH M, BIEKER-WALZ L, et al. Microscopic traffic simulation using SUMO[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 2575-2582.
[27] 刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85.
LIU J, GUAN W. A summary of traffic flow forecasting methods[J]. Journal of Highway Transportation Research Development, 2004, 21(3): 82-85.
[28] LV M Q, HONG Z X, CHEN L, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348.
[29] LI Z X, HAN Y, XU Z Y, et al. PMGCN: progressive multi-graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2023, 12(6): 241. |