计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 135-144.DOI: 10.3778/j.issn.1002-8331.2311-0408

• 模式识别与人工智能 • 上一篇    下一篇

多通道句法门控图神经网络用于句子级情感分析

张吴波,邹旺,熊黎,戴顺鄂,吴文欢   

  1. 1.湖北汽车工业学院 电气与信息工程学院,湖北 十堰 442002
    2.武汉工程大学 计算机科学与工程学院,武汉 430205
    3.武汉工程大学 艺术设计学院,武汉 430205
  • 出版日期:2025-04-15 发布日期:2025-04-15

Multi-Channel Syntactic Gated Graph Neural Network for Sentence-Level Sentiment Analysis

ZHANG Wubo, ZOU Wang, XIONG Li, DAI Shun’e, WU Wenhuan   

  1. 1.School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan, Hubei 442002, China
    2.School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
    3.School of Art and Design, Wuhan Institute of Technology, Wuhan 430205, China
  • Online:2025-04-15 Published:2025-04-15

摘要: 情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充分结合文本的单词特征、依存特征和词性特征。针对以上问题,提出一种多通道句法门控图神经网络的句子级情感分析方法(MSGNN)。该模型以句子的依存句法关系图为骨架,词性特征、单词特征和依存特征作为节点特征信息;利用三通道的门控图神经网络分别学习三种特征;采用图卷积神经网络聚合节点的特征信息。在SST-1、SST-2、MR三种基准数据集上的实验结果表明该模型相比基线模型的性能有所提升。

关键词: 情感分析, 句子级图神经网络, 依存特征, 门控图神经网络

Abstract: Sentiment analysis technology is an important task in the field of natural language processing. However, the graph construction of document-level graph neural network at this stage is complicated and requires a lot of memory resources. The online review text generally consists of short sentences, and document-level graph neural network for sentiment analysis is less efficient. Additionally, existing work on sentence-level graph neural networks has failed to adequately integrate the word features, dependency features, and part-of-speech features of the text. To address the above problems, this paper proposes a multi-channel syntactic gated graph neural network for sentence-level sentiment analysis (MSGNN). The model takes the dependency syntactic relation graph of sentences as the skeleton, and part-of-speech features, word features and dependency features as node feature information. Then a three-channel gated graph neural network is used to learn the three features separately. Finally a graph convolutional neural network is used to aggregate the feature information of the nodes. The experiment results on the three benchmark datasets, namely SST-1, SST-2, and MR, show that the performance of this model is improved compared with that of the baseline model.

Key words: sentiment analysis, sentence-level graph neural network, dependency features, gated graph neural network