[1] 冯超, 黎海辉, 赵洪雅, 等. 基于层次注意力机制和门机制的属性级别情感分析[J]. 中文信息学报, 2021, 35(10): 128-136.
FENG C, LI H H, ZHAO H Y, et al. Aspect-level sentiment analysis based on hierarchical attention and gate networks[J]. Journal of Chinese Information Processing, 2021, 35(10): 128-136.
[2] YANG C, ZHANG H, JIANG B, et al. Aspect-based sentiment analysis with alternating coattention networks[J]. Information Processing and Management, 2019, 56(3): 463-478.
[3] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016.
[4] SHUANG K, ZHANG Z, GUO H, et al. A sentiment information collector-extractor architecture based neural network for sentiment analysis[J]. Information Sciences, 2018, 467: 549-558.
[5] WANG L, NIU J, YU S. SentiDiff: combining textual information and sentiment diffusion patterns for Twitter sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(10): 2026-2039.
[6] SERRANO-GUERRERO J, OLIVAS J A, ROMERO F P, et al. Sentiment analysis: a review and comparative analysis of web services[J]. Information Sciences, 2015, 311: 18-38.
[7] TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the International Conference on Computational Linguistics, 2016: 3298-3307.
[8] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015.
[9] CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017: 452-461.
[10] SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification[J]. arXiv:1902.
09314, 2019.
[11] 王家乾, 龚子寒, 薛云, 等. 基于混合多头注意力和胶囊网络的特定目标情感分析[J]. 中文信息学报, 2020, 34(5): 100-110.
WANG J G, GONG Z H, XUE Y, et al. Aspect-based sentiment analysis based on hybrid multi-head attention and capsule networks[J]. Journal of Chinese Information Processing, 2020, 34(5): 100-110.
[12] DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understand -ing[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019.
[13] 陈壮, 钱铁云, 李万理, 等. 低资源方面级情感分析研究综述[J]. 计算机学报, 2023, 46(7): 1445-1472.
CHEN Z, QIAN T Y, LI W L, et al. Low-resource aspect-based sentiment analysis: a survey[J]. Chinese Journal of Computers, 2023, 46(7): 1445-1472.
[14] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 4068-4074.
[15] LI X, BING L D, LAM W, et al. Transformation networks for target-oriented sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018.
[16] ZHANG C, LI Q, SONG D, et al. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019.
[17] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the Twenty-Seventh Annual Conference on Neural Information Processing Systems Conference, 2013: 3111-3119.
[18] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014.
[19] 宋威, 温子健. 基于特征双重蒸馏网络的方面级情感分析[J]. 中文信息学报, 2021, 35(7): 126-133.
SONG W, WEN Z J. Feature dual distillation network for aspect-based sentiment analysis[J]. Journal of Chinese Information Processing, 2021, 35(7): 126-133.
[20] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval2014 task4: aspect based sentiment analysis[C]//Proceedings of the 18th International Workshop on Semantic Evaluation, 2014: 27-35.
[21] 夏鸿斌, 顾艳, 刘渊. 面向特定方面情感分析的图卷积过度注意(ASGCN-AOA)模型[J]. 中文信息学报, 2022, 36(3): 146-153.
XIA H B, GU Y, LIU Y. Graph convolution overattention (ASGCN-AOA) model for specific aspects of sentiment analysis[J]. Journal of Chinese Information Processing, 2022, 36(3): 146-153.
[22] XU L, BING L, LU W, et al. Aspect sentiment classification with aspect-specific opinion spans[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020.
[23] SONG Y, WANG J, TAO J, et al. Attentional encoder network for targeted sentiment classification[J]. arXiv:1902.
09314, 2019.
[24] 王娅丽, 张凡, 余增, 等. 基于交互注意力和图卷积网络的方面级情感分析[J]. 计算机科学, 2023, 50(4): 196-203.
WANG Y L, ZHANG F, YU Z, et al. Aspect-level sentiment classification based on interactive attention and graph convolutional network[J]. Computer Science, 2023, 50(4): 196-203. |