计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (8): 148-155.DOI: 10.3778/j.issn.1002-8331.2212-0301

• 模式识别与人工智能 • 上一篇    下一篇

脑电信号多特征融合与卷积神经网络算法研究

宋世林,张学军   

  1. 1.南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,南京 210023
    2.南京邮电大学 射频集成与微组装技术国家地方联合工程实验室,南京 210023
  • 出版日期:2024-04-15 发布日期:2024-04-15

Algorithm Research Based on Multi-Feature Fusion of EEG Signals with Convolutional Neural Networks

SONG Shilin, ZHANG Xuejun   

  1. 1.College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    2.National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Online:2024-04-15 Published:2024-04-15

摘要: 针对脑电信号(electroencephalogram,EEG)运动想象中单一特征无法多维表征信号中的信息导致的分类准确率不高的问题,提出一种基于样本熵和共空间模式特征融合的特征提取算法。算法先对原始脑电信号进行小波包分解,从中选择包含μ和β节律的分量进行重构,然后分别提取重构信号的样本熵和CSP(common spatial pattern,CSP)特征,将两者融合组成新的特征向量,使用所设计的一维卷积神经网络对其进行识别获得分类结果。所提方法在2003年BCI Dataset III中获得了91.66%的分类准确率,在2008年BCI Dataset A中获得了85.29%的平均分类准确率。与近年来文献中提出的多特征融合算法相比,准确率提高了7.96个百分点。

关键词: 脑电信号, 运动想象, 小波包重构, 样本熵, 共空间模式, 卷积神经网络

Abstract: In order to address the issue of low classification accuracy in motor imagery of electroencephalogram (EEG) signals, a feature extraction algorithm based on sample entropy and common spatial pattern (CSP) feature fusion has been proposed. The algorithm initially performs wavelet packet decomposition on the raw EEG signal, selecting the components containing μ and β rhythms for reconstruction. Subsequently, the sample entropy and CSP features of the reconstructed signal are separately extracted. These two features are then fused to create a new feature vector which is recognized using a one-dimensional convolutional neural network designs in the paper, to obtain the classification result. The proposes method achieves a classification accuracy of 91.66% on the BCI Dataset III in 2003 and an average classification accuracy of 85.29% on the BCI Dataset A in 2008. Comparing with multi-feature fusion algorithms proposed in recent literature, the accuracy is improved by 7.96 percentage points.

Key words: electroencephalogram, motor imagery, wavelet packet transform, sample entropy, common spatial pattern, convolution neural network