计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (6): 220-228.DOI: 10.3778/j.issn.1002-8331.2311-0035

• 模式识别与人工智能 • 上一篇    下一篇

融合位置信息和交互注意力的方面级情感分析

李佳静,李盛,戴媛媛,孟涛,罗小清,闫宏飞   

  1. 1.中国矿业大学(北京) 人工智能学院,北京 100083
    2.南京网感至察信息科技有限公司,南京 210001
    3.北京大学 经济学院,北京 100871
    4.北京大学 计算机学院,北京 100871
  • 出版日期:2025-03-15 发布日期:2025-03-14

Aspect-Level Sentiment Analysis Incorporating Location Information and Interaction Attention

LI Jiajing, LI Sheng, DAI Yuanyuan, MENG Tao, LUO Xiaoqing, YAN Hongfei   

  1. 1.School of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100083, China
    2.Wangganzhicha Information Technology Inc, Nanjing 210001, China
    3.School of Economics, Peking University, Beijing 100871, China
    4.School of Computer Science,Peking University, Beijing 100871, China
  • Online:2025-03-15 Published:2025-03-14

摘要: 社交媒体和电商平台中涌现了大量的评论性文本,基于注意力的方面级情感分析方法已经被广泛用于对这些文本进行分析。现有的方法在实现方面词和上下文的交互注意时,存在没有利用上下文和方面词的相对位置关系,只关注方面词对上下文的影响导致语义交互不够充分,和将方面词作为一个整体进行计算等问题。提出一种融合相对位置信息的交互注意力的方面级情感分析模型。利用双向长短期记忆网络学习融合位置信息的上下文和方面词的语义特征,融入可学习的参数矩阵将上下文与方面词的语义特征进行交互学习,并使用交互注意力在字词粒度上分别计算方面词对上下文的影响以及上下文对方面词的影响,最后进行情感分类。在SemEval 2014 Task4基准数据集以及Twitter数据集上进行了多个实验,实验结果表明,提出的模型取得的性能优于比较方法。

关键词: 方面级情感分析, 位置信息, 交互注意力, 深度学习

Abstract: A large number of commentary texts appear on social media and e-commerce platforms, and attention-based aspect-level sentiment analysis methods have been widely used to analyze these texts.When the existing methods achieve the interactive attention between aspect words and context, there is no use of the relative positional relationship between context and aspect words, and only focus on the influence of aspect words on the context, resulting in insufficient semantic interaction, and the aspect words as a whole. An aspect-level sentiment analysis model with interactive attention incorporating relative position information is proposed. Firstly, the bidirectional long short-term memory network is used to learn the semantic features of the aspect words and context that fuses the location information, and then the learnable parameter matrix is integrated to conduct interactive learning of the semantic features of context and aspect words,and interactive attention is used to calculate the impact of aspect words on context and the impact of context on aspect words at word granularity. Finally, sentiment classification is carried out. Several experiments are conducted on the SemEval 2014 Task4 and Twitter benchmark datasets. The experimental results show that the proposed model achieves better performance than the comparison methods.

Key words: aspect-based sentiment analysis, position information, interactive attention, deep learning