
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (5): 1-17.DOI: 10.3778/j.issn.1002-8331.2406-0160
洪书颖,张东霖
出版日期:2025-03-01
发布日期:2025-03-01
HONG Shuying, ZHANG Donglin
Online:2025-03-01
Published:2025-03-01
摘要: 随着自动驾驶技术的迅猛发展,车道线检测作为其关键组成部分,引起了广泛关注,并在智能交通系统中展现出巨大的应用潜力。然而,在应对复杂环境挑战时,传统车道线检测技术往往难以提供足够的识别精度。回顾车道线检测技术的发展轨迹,系统性地梳理了84种先进算法,并创新性地根据语义处理方式划分为四类别:语义分割辅助类、语义信息融合类、语义信息增强类和语义关系建模类。通过深入剖析算法的技术特点和优势,揭示了当前车道线检测技术所面临的主要局限。最后,对未来车道线检测技术的发展方向提出见解,特别是在语义信息利用方面,指出了潜在的研究方向。
洪书颖, 张东霖. 语义信息处理方式分类的车道线检测技术研究综述[J]. 计算机工程与应用, 2025, 61(5): 1-17.
HONG Shuying, ZHANG Donglin. Survey on Lane Line Detection Techniques for Classifying Semantic Information Processing Modalities[J]. Computer Engineering and Applications, 2025, 61(5): 1-17.
| [1] QIN Z Q, WANG H Y, LI X. Ultra fast structure-aware deep lane detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Cham: Springer, 2020: 276-291. [2] LEE S, KIM J, YOON J S, et al. VPGNet: vanishing point guided network for lane and road marking detection and recognition[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1965-1973. [3] ZHANG Y J, ZHU L, FENG W, et al. VIL-100: a new dataset and a baseline model for video instance lane detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15661-15670. [4] CHEN L, SIMA C H, LI Y, et al. PersFormer: 3D lane detection viaPerspective transformer andtheOpenLane benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 550-567. [5] UDDIN N, HERMAWAN H, SITORUS F J P, et al. Lane detection system based on canny method for driving assistance[C]//Proceedings of the 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation. Piscataway: IEEE, 2023: 1-6. [6] POKALE S, NITURE D V. On-board camera-based lane and traffic sign detection for 2 wheeler HeadLamp[C]//Proceedings of the 2022 IEEE 7th International Conference for Convergence in Technology (I2CT). Piscataway: IEEE, 2022: 1-6. [7] YU G Q, QIU D. Research on lane detection method of intelligent vehicle in multi-road condition[C]//Proceedings of the 2021 China Automation Congress. Piscataway: IEEE, 2021: 2779-2783. [8] AHMED Y A, MOHAMED A T, ALY A M B. Robust lane departure warning system for ADAS on highways[C]//Proceedings of the 2022 4th Novel Intelligent and Leading Emerging Sciences Conference. Piscataway: IEEE, 2022: 321-324. [9] HASHEM A, SCHLECHTER T. Feature-based lane detection algorithms for track following: a comparative study[C]//Proceedings of the 2022 8th International Conference on Mechatronics and Robotics Engineering. Piscataway: IEEE, 2022: 169-173. [10] SONG W J, YANG Y, FU M Y, et al. Lane detection and classification for forward collision warning system based on stereo vision[J]. IEEE Sensors Journal, 2018, 18(12): 5151-5163. [11] SULTANA S, AHMED B. Lane detection and tracking under rainy weather challenges[C]//Proceedings of the 2021 IEEE Region 10 Symposium. Piscataway: IEEE, 2021: 1-6. [12] HONG S, PARK D. Runtime virtual lane prediction based on inverse perspective transformation and machine learning for lane departure warning in low-power embedded systems[C]//Proceedings of the 2022 IEEE International Conference on Imaging Systems and Techniques. Piscataway: IEEE, 2022: 1-6. [13] SWETHA S, SIVAKUMAR P. SSLA based traffic sign and lane detection for autonomous cars[C]//Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems. Piscataway: IEEE, 2021: 766-771. [14] RATH M K, SWAIN P K, BANERJEE S. An optimised deep learning approach of lane detection in complex Indian environment[C]//Proceedings of the 2022 1st IEEE International Conference on Industrial Electronics: Developments & Applications. Piscataway: IEEE, 2022: 1-5. [15] FENG Z Y, GUO S H, TAN X, et al. Rethinking efficient lane detection via curve modeling[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17041-17049. [16] CHNG Z M, LEW J M H, LEE J A. RONELD: robust neural network output enhancement for active lane detection[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 6842-6849. [17] CHNG Z M, LEW J M H, LEE J A. RONELDv2: a faster, improved lane tracking method[J]. arXiv:2202.13137, 2022. [18] WU P C, CHANG C, LIN C H. Lane-mark extraction for automobiles under complex conditions[J]. Pattern Recognition, 2014, 47(8): 2756-2767. [19] MAMMERI A, BOUKERCHE A, TANG Z Z. A real-time lane marking localization, tracking and communication system[J]. Computer Communications, 2016, 73: 132-143. [20] HOU Y N. Agnostic lane detection[J]. arXiv:1905.03704, 2019. [21] ZHENG T, FANG H, ZHANG Y, et al. RESA: recurrent feature-shift aggregator for lane detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 3547-3554. [22] XU S H, CAI X Y, ZHAO B, et al. RCLane: relay chain prediction for lane detection[C]//Proceedings of the International Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 461-477. [23] CHEN Z Y, LIU Y, GONG M M, et al. Generating dynamic kernels via transformers for lane detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6812-6821. [24] BIN ABDUL RAZAK N, BIN MAZLAN M Z, JOHARI J B, et al. A lane detection using image processing technique for two-lane road[C]//Proceedings of the 2022 IEEE 10th Conference on Systems, Process & Control. Piscataway: IEEE, 2022: 214-219. [25] RAHMAN Z, MORRIS B T. LVLane: deep learning for lane detection and classification in challenging conditions[C]//Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2023: 3901-3907. [26] LIU L Z, CHEN X H, ZHU S Y, et al. CondLaneNet: a top-to-down lane detection framework based on conditional convolution[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3753-3762. [27] ZHOU K Y, ZHOU R. End-to-end lane detection with one-to-several transformer[J]. arXiv:2305.00675, 2023. [28] JAYASINGHE O, ANHETTIGAMA D, HEMACHANDRA S, et al. SwiftLane: towards fast and efficient lane detection[C]//Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2021: 859-864. [29] NEVEN D, DE BRABANDERE B, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 286-291. [30] CHE Q H, NGUYEN D P, PHAM M Q, et al. TwinLiteNet: an efficient and lightweight model for driveable area and lane segmentation in self-driving cars[C]//Proceedings of the 2023 International Conference on Multimedia Analysis and Pattern Recognition. Piscataway: IEEE, 2023: 1-6. [31] XU H, WANG S J, CAI X Y, et al. CurveLane-NAS: unifying lane-sensitive architecture search and adaptive point blending[C]//Proceedings of the International Conference on Computer Vision. Cham: Springer, 2020: 689-704. [32] ZHANG J Y, DENG T, YAN F, et al. Lane detection model based on spatio-temporal network with double convolutional gated recurrent units[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6666-6678. [33] DONG Y Q, PATIL S, VAN AREM B, et al. A hybrid spatial-temporal deep learning architecture for lane detection[J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38(1): 67-86. [34] JIN D, KIM D, KIM C S. Recursive video lane detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 8439-8448. [35] XIE J, HAN J C, QI D Z, et al. Lane detection with position embedding[C]//Proceedings of the Fourteenth International Conference on Digital Image Processing, 2022: 78-86. [36] LI C G, ZHANG B H, SHI J, et al. Multi-level domain adaptation for lane detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4379-4388. [37] ZHENG T, HUANG Y F, LIU Y, et al. CLRNet: cross layer refinement network for lane detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 888-897. [38] ZHANG Y Z, ZHENG Y X, WU C Y, et al. ECPNet: an enhanced curve perception network for lane detection[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 7380-7384. [39] ZHANG Q D, GAO Z L, ZHANG X L. A lane detection method based on multi-indicator scoring mechanism[C]//Proceedings of the 2023 4th International Conference on Computer Vision, Image and Deep Learning. Piscataway: IEEE, 2023: 613-616. [40] LV Z N, HAN D, WANG W Z, et al. IFPNet: integrated feature pyramid network with fusion factor for lane detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1880-1889. [41] XING Y, LV C, CHEN L, et al. Advances in vision-based lane detection: algorithms, integration, assessment, and perspectives on ACP-based parallel vision[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(3): 645-661. [42] LUO Y, YAN X, ZHENG C, et al. M2-3DLaneNet: exploring multi-modal 3D lane detection[J]. arXiv:2209.05996, 2022. [43] JUNG S, CHOI S, KHAN M A, et al. Towards lightweight lane detection by optimizing spatial embedding[J]. arXiv:2008.08311, 2020. [44] CHENG W S, LUO H, YANG W, et al. Structure-aware network for lane marker extraction with dynamic vision sensor[J]. arXiv:2008.06204, 2020. [45] TABELINI L, BERRIEL R, PAIX?O T M, et al. Keep your eyes on the lane: real-time attention-guided lane detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 294-302. [46] YANG J X, ZHANG L H, LU H C. Lane detection with versatile AtrousFormer and local semantic guidance[J]. Pattern Recognition, 2023, 133: 109053. [47] LIU D Z, ZHU H, LI R, et al. LaneJoint: simultaneous lane detection and classification algorithm[C]//Proceedings of the 2022 China Automation Congress. Piscataway: IEEE, 2022: 2967-2972. [48] XIAO L Y, LI X, YANG S, et al. ADNet: lane shape prediction via anchor decomposition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6381-6390. [49] CHEN Z Y, SMITH-MILES K, DU B, et al. An efficient transformer for simultaneous learning of BEV and lane representations in 3D lane detection[J]. arXiv:2306.04927, 2023. [50] YANG Z Y, SHEN C, SHAO W, et al. CANet: curved guide line network with adaptive decoder for lane detection[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. [51] GU Y C, MA C, LI Q, et al. 3D lane detection with attention in attention[J]. IEEE Signal Processing Letters, 2024, 31: 1104-1108. [52] HOU Y N, MA Z, LIU C X, et al. Learning lightweight lane detection CNNs by self attention distillation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1013-1021. [53] HE Y, JIANG M Y, YE X Q, et al. Repainting and imitating learning for lane detection[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 5508-5516. [54] LEE M, LEE J, LEE D, et al. Robust lane detection via expanded self attention[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1949-1958. [55] MA L Y, ZHU H, DUAN H. A method of multiple lane detection based on constraints of lane information[C]//Proceedings of the 2021 China Automation Congress. Piscataway: IEEE, 2021: 4059-4064. [56] QIU Q B, GAO H M, HUA W, et al. PriorLane: a prior knowledge enhanced lane detection approach based on transformer[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 5618-5624. [57] FANG H Y, ZHU J, FANG Y. ContinuityLearner: geometric continuity feature learning for lane segmentation[J]. arXiv:2108.03507, 2021. [58] KIM J, KIM J, JANG G J, et al. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection[J]. Neural Networks, 2017, 87: 109-121. [59] GAO X, BAI H L, XIONG Y J, et al. Robust lane line segmentation based on group feature enhancement[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105568. [60] WANG L M, ZHONG H Y. FENet: focusing enhanced network for lane detection[C]//Proceedings of the 2024 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2024: 1-6. [61] LIU R J, YUAN Z J, LIU T, et al. End-to-end lane shape prediction with transformers[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3693-3701. [62] LI C, SHI J, WANG Y, et al. Reconstruct from BEV: a 3D lane detection approach based on geometry structure prior[J]. arXiv:2206.10098, 2022. [63] SU J, CHEN C, ZHANG K, et al. Structure guided lane detection[J]. arXiv:2105.05403, 2021. [64] AI J Y, DING W B, ZHAO J H, et al. WS-3D-Lane: weakly supervised 3Dlane detection with 2D lane labels[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 5595-5601. [65] WANG J S, MA Y C, HUANG S F, et al. A keypoint-based global association network for lane detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1382-1391. [66] LUO Y R, ZHENG C D, YAN X, et al. LATR: 3Dlane detection from monocular images with transformer[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 7907-7918. [67] ZHAO L Q, ZHENG W Z, ZHANG Y P, et al. StructLane: leveraging structural relations for lane detection[J]. IEEE Transactions on Image Processing, 2024, 33: 3692-3706. [68] WANG R H, QIN J B, LI K, et al. BEV-LaneDet: a simple and effective 3D lane detection baseline[J]. arXiv:2210.06006, 2022. [69] HUANG S F, SHEN Z W, HUANG Z H, et al. Anchor3DLane: learning to regress 3D anchors for monocular 3D lane detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 17451-17460. [70] REN H, WANG M W, LEI X Y, et al. Refinement bird’s eye view feature for 3D lane detection with dual-branch view transformation module[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 5930-5934. [71] LI X, LI J, HU X L, et al. Line-CNN: end-to-end traffic line detection with line proposal unit[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 248-258. [72] BAI Y F, CHEN Z R, FU Z J, et al. CurveFormer: 3Dlane detection by curve propagation with curve queries and attention[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 7062-7068. [73] HAN W, SHEN J. Decoupling the curve modeling and pavement regression for lane detection[J]. arXiv:2309.10533, 2023. [74] EFRAT N, BLUVSTEIN M, ORON S, et al. 3D-LaneNet+: anchor free lane detection using a semi-local representation[J]. arXiv:2011.01535, 2020. [75] LU Z Y, ZHANG H L, WANG R T, et al. Towards better 3D visual lane detection in traffic scenes via leveraging object semantics[C]//Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2023: 3817-3824. [76] PAN X G, SHI J P, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 7276-7283. [77] QU Z, JIN H, ZHOU Y, et al. Focus on local: detecting lane marker from bottom up via key point[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14117-14125. [78] ZHOU H Y, SONG X. Lane detection algorithm based on haar feature based coupled cascade classifier[C]//Proceedings of the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers. Piscataway: IEEE, 2021: 286-291. [79] ABUALSAUD H, LIU S A, LU D B, et al. LaneAF: robust multi-lane detection with affinity fields[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7477-7484. [80] JOY S, S M B, MUKESH T B, et al. Real time road lane detection using computer vision techniques in Python[C]//Proceedings of the 2022 International Conference on Automation, Computing and Renewable Systems. Piscataway: IEEE, 2022: 1228-1232. [81] LI Z L, HAN C R, GE Z, et al. GroupLane: end-to-end 3D lane detection with channel-wise grouping[J]. IEEE Robotics and Automation Letters, 2024, 9(11): 10487-10494. [82] MEYER A, SKUDLIK P, PAULS J H, et al. YOLinO: generic single shot polyline detection in real time[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2916-2925. [83] JIN D, PARK W, JEONG S G, et al. Eigenlanes: data-driven lane descriptors for structurally diverse lanes[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17142-17150. [84] SATO T, CHEN Q A. Towards driving-oriented metric for lane detection models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17132-17141. [85] 葛泽坤, 陶发展, 付主木, 等. 改进多头注意力机制的车道检测方法[J]. 计算机工程与应用, 2024, 60(2): 264-271. GE Z K, TAO F Z, FU Z M, et al. Lane detection method based on improved multi-head self-attention[J]. Computer Engineering and Applications, 2024, 60(2): 264-271. [86] 刘岩, 仇甜甜, 肖艳秋, 等. 融合改进GAN网络的夜视环境车道线检测[J]. 计算机工程与应用, 2023, 59(15): 214-222. LIU Y, QIUT T, XIAO Y Q, et al. Lane detection algorithm based on introduction of improved GAN network in night vision environment[J]. Computer Engineering and Applications, 2023, 59(15): 214-222. |
| [1] | 刘红玉, 高见. 融合CBAM的违法犯罪类安卓恶意软件检测与分类模型研究[J]. 计算机工程与应用, 2025, 61(6): 317-327. |
| [2] | 张奇, 周威, 胡伟超, 于鹏程. 融合递进式域适应和交叉注意力的事故检测方法[J]. 计算机工程与应用, 2025, 61(6): 349-360. |
| [3] | 黄德启, 黄海峰, 黄德意, 刘振航. BEV感知学习在自动驾驶中的应用综述[J]. 计算机工程与应用, 2025, 61(6): 1-21. |
| [4] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [5] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| [6] | 王敬凯, 秦董洪, 白凤波, 李路路, 孔令儒, 徐晨. 语音识别与大语言模型融合技术研究综述[J]. 计算机工程与应用, 2025, 61(6): 53-63. |
| [7] | 侯颖, 胡鑫, 赵瑞瑞, 张楠, 徐艳红, 马莉. 感兴趣区域YOLO_BFROI的扶梯乘客安全检测算法[J]. 计算机工程与应用, 2025, 61(6): 84-95. |
| [8] | 李佳静, 李盛, 戴媛媛, 孟涛, 罗小清, 闫宏飞. 融合位置信息和交互注意力的方面级情感分析[J]. 计算机工程与应用, 2025, 61(6): 220-228. |
| [9] | 张建伟, 陈旭, 王叔洋, 景永俊, 宋吉飞. 时空图神经网络在物联网中的应用综述[J]. 计算机工程与应用, 2025, 61(5): 43-54. |
| [10] | 余城旭, 张宇来. 基于微调的深度学习后门防御研究[J]. 计算机工程与应用, 2025, 61(5): 155-164. |
| [11] | 李小童, 马素芬, 生慧, 魏国辉, 李欣桐. 基于深度学习的肺部CT图像病灶区域分割研究综述[J]. 计算机工程与应用, 2025, 61(4): 25-42. |
| [12] | 董甲东, 郭庆虎, 陈琳, 桑飞虎. 深度学习中单阶段金属表面缺陷检测算法优化综述[J]. 计算机工程与应用, 2025, 61(4): 72-89. |
| [13] | 雷景生, 章志豪, 钱小鸿, 王巍然, 杨胜英. 改进YOLOX的轻量级多方向车牌检测算法[J]. 计算机工程与应用, 2025, 61(4): 230-240. |
| [14] | 张锴, 贾涛. 结合知识图谱和小目标改进的RCNN电力杆塔部件识别方法[J]. 计算机工程与应用, 2025, 61(4): 299-309. |
| [15] | 蒋悦晗, 陈俊杰, 李洪均. 基于骨骼图神经网络的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(3): 34-47. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||