[1] 李海涛, 李志慧, 王鑫, 等. 基于时间卷积自编码网络的实时交通事件自动检测方法[J]. 中国公路学报, 2022, 35(6): 265-276.
LI H T, LI Z H, WANG X, et al. Real-time automatic method of detecting traffic incidents based on temporal convolutional autoencoder network[J]. China Journal of Highway and Transport, 2022, 35(6): 265-276.
[2] 王晨, 周威, 严隽逸, 等. 一种用于道路交通事故自动检测的改进双流网络[J]. 中国公路学报, 2023, 36(5): 185-196.
WANG C, ZHOU W, YAN J Y, et al. Improved two-stream network for vision-based traffic accident detection[J]. China Journal of Highway and Transport, 2023, 36(5): 185-196.
[3] 王晨, 周威, 章世祥. 一种特征融合的视频事故快速检测方法[J]. 交通运输工程与信息学报, 2022, 20(1): 31-38.
WANG C, ZHOU W, ZHANG S X. A feature fusion deep learning framework for video-based crash detection systems[J]. Journal of Transportation Engineering and Information, 2022, 20(1): 31-38.
[4] 拜佩, 李金屏. 一种基于视频的交通事故检测方法[J]. 济南大学学报 (自然科学版), 2012, 26(3): 282-286.
BAI P, LI J P. A video-based method of traffic accident detection[J]. Journal of University of Jinan (Science and Technology), 2012, 26(3): 282-286.
[5] SADEK S, AL-HAMADI A, MICHAELIS B, et al. Real-time automatic traffic accident recognition using HFG[C]//Proceedings of the 20th International Conference on Pattern Recognition, 2010: 3348-3351.
[6] IJJINA E P, CHAND D, GUPT S, et al. Computer vision-based accident detection in traffic surveillance[C]//Proceedings of the International Conference on Computing, Communication and Networking Technologies, 2019: 1-6.
[7] MAALOUL B, TALEB-AHMED A, NIAR S, et al. Adaptive video-based algorithm for accident detection on highways[C]//Proceedings of the IEEE International Symposium on Industrial Embedded Systems, 2017: 1-6.
[8] ARCEDA V M, RIVEROS E L. Fast car crash detection in video[C]//Proceedings of the 2018 XLIV Latin American Computer Conference (CLEI), 2018: 632-637.
[9] 陈斌, 金炜东. 四类交通事故检测算法的分析[J]. 交通科技与经济, 2005(3): 50-52.
CHEN B, JIN W D. Analysis of four category accident detection algorithms[J]. Technology and Economy in Areas of Communication, 2005(3): 50-52.
[10] LU Z, ZHOU W, HANG S, et al. A new video-based crash detection method: balancing speed and accuracy using a feature fusion deep learning framework[J]. Journal of Advanced Transportation, 2020(8): 8848874.
[11] WANG C, DAI Y L, ZHOU W, et al. A vision-based video crash detection framework for mixed traffic flow environment considering low-visibility condition[J]. Journal of Advanced Transportation, 2020(1): 9194028.
[12] HUANG X, HE P, RANGARAJAN A, et al. Intelligent intersection: two-stream convolutional networks for real-time near accident detection in traffic video[J]. ACM Transactions on Spatial Algorithms and Systems, 2019, 6(2): 1-28.
[13] BATANINA E, BEKKOUCH I, YOUSSRY Y, et al. Domain adaptation for car accident detection in videos[C]//Proceedings of the 2019 Ninth International Conference on Image Processing Theory, Tools and Applications, 2019: 1-6.
[14] SINGH D, MOHAN C K. Deep spatio-temporal representation for detection of road accidents using stacked autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 879-887.
[15] LUO W, WEN L, GAO S. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo, 2017: 439-444.
[16] DOSHI K, YILMAZ Y. Online anomaly detection in surveillance videos with asymptotic bounds on false alarm rate[J]. Pattern Recognition, 2021, 114(2): 107865.
[17] SHAH A P, LAMARE J B, NGUYEN-ANH T, et al. CADP: a novel dataset for CCTV traffic camera based accident analysis[C]//Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2018: 1-9.
[18] WANG M, DENG W. Deep visual domain adaptation: a survey[J]. Neurocomputing, 2018, 312: 135-153.
[19] KI Y K, LEE D Y. A traffic accident recording and reporting model at intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2): 188-194.
[20] ZHONG J X, LI N, KONG W, et al. Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1237-1246.
[21] FENG J C, HONG F T, ZHENG W S. Mist: multiple instance self-training framework for video anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14009-14018.
[22] LUO W, LIU W, GAO S. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), 2017: 439-444.
[23] LEE S, KIM H G, RO Y M. STAN: spatio-temporal adversarial networks for abnormal event detection[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018: 1323-1327.
[24] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1705-1714.
[25] WANG X, CHE Z, JIANG B, et al. Robust unsupervised video anomaly detection by multipath frame prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2301-2312.
[26] DOSHI K, YILMAZ Y. Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate[J]. Pattern Recognition, 2021, 114: 107865.
[27] ZHOU W, WEN L, ZHAN Y, et al. An appearance-motion network for vision-based crash detection: improving the accuracy in congested traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2023.
[28] SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6479-6488.
[29] LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6536-6545.
[30] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[31] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the International Conference on Machine Learning, 2015: 1180-1189.
[32] KANG G, JIANG L, YANG Y, et al. Contrastive adaptation network for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4893-4902.
[33] 赵鹏飞, 李艳玲, 林民. 结合胶囊网络的领域适应意图识别[J]. 计算机工程与应用, 2021, 57(21): 188-194.
ZHAO P F, LI Y L, LIN M, et al. Intent detection of domain adaptation combined with capsule network[J]. Computer Engineering and Applications, 2021, 57(21): 188-194.
[34] 刘华玲, 皮常鹏, 赵晨宇,等. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12.
LIU H L, PI C P, ZHAO C Y, et al. Review of cross-domain object detection algorithms based on depth domain adaptation[J]. Computer Engineering and Applications, 2023, 59(8): 1-12.
[35] 赵雪冰, 王俊杰. 基于改进DeeplabV3+和迁移学习的桥梁裂缝检测[J]. 计算机工程与应用, 2023, 59(5): 262-269.
ZHAO X B, WANG J J. Bridge crack detection based on improved DeeplabV3+ and migration learning[J]. Computer Engineering and Applications, 2023, 59(5): 262-269.
[36] CHEN C F R, FAN Q, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 357-366.
[37] WANG L, XIONG Y, WANG Z, et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(11): 2740-2755.
[38] KIM H, LEE K, HWANG G, et al. Crash to not crash: learn to identify dangerous vehicles using a simulator[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 978-985.
[39] LIN J, GAN C, HAN S. TSM: temporal shift module for efficient video understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7083-7093.
[40] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6299-6308.
[41] HAJRI F, FRADI H. Vision transformers for road accident detection from dashboard cameras[C]//Proceedings of the 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2022: 1-8.
[42] KARIM M M, LI Y, QIN R, et al. A dynamic spatial-temporal attention network for early anticipation of traffic accidents[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9590-9600.
[43] HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. |