[1] 隋宇, 宁平凡, 牛萍娟, 等. 面向架空输电线路的挂载无人机电力巡检技术研究综述[J]. 电网技术, 2021, 45(9): 3636-3648.
SUI Y, NING P F, NIU P J, et al. Review on mounted UAV for transmission line inspection[J]. Power System Technology, 2021, 45(9): 3636-3648.
[2] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.
[3] 卓天天, 桑庆兵. 注意力机制与复合卷积在手写识别中的应用[J]. 计算机科学与探索, 2022, 16(4): 888-897.
ZHUO T T, SANG Q B. Application of attention mechanism and composite convolution in handwriting recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 888-897.
[4] 王海勇, 潘海涛, 刘贵楠. 融合注意力机制和课程式学习的人脸识别方法[J]. 计算机科学与探索, 2023, 17(8): 1893-1903.
WANG H Y, PAN H T, LIU G N. Face recognition method based on attention mechanism and curriculum learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903.
[5] 毛锐, 张宇晨, 王泽玺, 等. 利用改进Faster-RCNN识别小麦条锈病和黄矮病[J]. 农业工程学报, 2022, 38(17): 176-185.
MAO R, ZHANG Y C, WANG Z X, et al. Recognizing stripe rust and yellow dwarf of wheat using improved Faster-RCNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 176-185.
[6] XU H, JIANG C, LIANG X, et al. Reasoning-RCNN: unifying adaptive global reasoning into large-scale object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019. Piscataway: IEEE, 2019: 6412-6421.
[7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[8] CAI Z, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
[9] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, 2017. Piscataway: IEEE, 2017: 2980-2988.
[10] 林刚, 王波, 彭辉, 等. 基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J]. 电力自动化设备, 2019, 39(5): 213-218.
LIN G, WANG B, PENG H, et al. Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN[J]. Electric Power Automation Equipment, 2019, 39(5): 213-218.
[11] 王万国, 田兵, 刘越, 等. 基于RCNN的无人机巡检图像电力小部件识别研究[J]. 地球信息科学学报, 2017, 19(2): 256-263.
WANG W G, TIAN B, LIU Y, et al. Study on the electrical devices detection in UAV images based on region based convolutional neural networks[J]. Journal of Geo-Information Science, 2017, 19(2): 256-263.
[12] 顾超越, 李喆, 史晋涛, 等. 基于改进Faster-RCNN的无人机巡检架空线路销钉缺陷检测[J]. 高电压技术, 2020, 46(9): 3089-3096.
GU C Y, LI Z, SHI J T, et al. Detection for pin defects of overhead lines by UAV patrol image based on improved Faster-RCNN[J]. High Voltage Engineering, 2020, 46(9): 3089-3096.
[13] WEI L, DRAGOMIR A, DUMITRU E, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. Piscataway: IEEE, 2016: 779-788.
[15] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[16] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[17] 郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法[J]. 电网技术, 2021, 45(8): 2979-2987.
HAO S, MA R Z, ZHAO X S, et al. Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power System Technology, 2021, 45(8): 2979-2987.
[18] 郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J]. 中国电机工程学报, 2023, 43(6): 2319-2331.
HAO S, YANG L, MA X, et al. YOLOv5 transmission line fault detection based on attention mechanism and cross-scale feature fusion[J]. Proceedings of the CSEE, 2023, 43(6): 2319-2331.
[19] HU H, GU J, ZHANG Z, et al. Relation networks for object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018. Piscataway: IEEE, 2018: 3588-3597.
[20] MARINO K, SALAKHUTDINOV R, GUPTA A. The more you know: using knowledge graphs for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017. Piscataway: IEEE, 2017: 20-28.
[21] DENG J, DING N, JIA Y, et al. Large-scale object classification using label relation graphs[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 48-64.
[22] 董刚, 谢维成, 黄小龙, 等. 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59(11): 16-27.
DONG G, XIE W C, HUANG X L, et al. Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
[23] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017. Piscataway: IEEE, 2017: 936-944.
[24] BAI Y, ZHANG Y, DING M, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 210-226.
[25] BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. Piscataway: IEEE, 2016: 2874-2883.
[26] LI F, ZHANG H, LIU S, et al. DN-DETR: accelerate DETR training by introducing query DeNoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, 2022. Piscataway: IEEE, 2022: 13609-13617. |