[1] BOAS F E, FLEISCHMANN D. CT artifacts: causes and reduction techniques[J]. Imaging in Medicine, 2012, 4(2): 229-240.
[2] WANG J, LI T, LU H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2006, 25: 1272-1283.
[3] MANDUCA A, YU L, TRZASKO J D, et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT[J]. Medical Physics, 2009, 36(11): 4911-4919.
[4] BALDA M, HORNEGGER J, HEISMANN B. Ray contribution masks for structure adaptive sinogram filtering[J]. IEEE Transactions on Medical Imaging, 2012, 31(6): 1228-1239.
[5] LIU L, LI X, XIANG K, et al. Low-dose CBCT reconstruction using hessian schatten penalties[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2588-2599.
[6] LIU J, HU Y, YANG J, et al. 3D feature constrained reconstruction for low dose CT imaging[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(99): 1232-1247.
[7] 刘祎,高净植,桂志国. 基于NSST域卷积神经网络的低剂量CT图像恢复[J]. 计算机工程与应用, 2019, 55(23): 209-215.
LIU Y, GAO J Z, GUI Z G. Low-dose CT restoration based on CNN in NSST domain[J]. Computer Engineering and Applications, 2019, 55(23): 209-215.
[8] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3?D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
[9] YIN Y, SUN W, LU J, et al. A non-local means approach for PET image denoising[J]. ?Journal of Biomedical Engineering, 2010, 27(2): 274-281 .
[10] CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network (RED-CNN)[J]. IEEE Transactions on Medical Imaging, 2017, 36(99): 2524-2535.
[11] FAN F, SHAN H, KALRA M, et al. Quadratic autoencoder (Q-AE) for low-dose CT denoising[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 2035-2050.
[12] 刘帅, 安冬, 须颖, 等. 基于RN-CNN模型的低剂量CT图像去噪方法[J]. 计算机应用与软件, 2023, 40(1): 241-247.
LIU S, AN D, XU Y, et al. Low dose CT image denoising method based on RN-CNN model[J]. Computer Applications and Software, 2023, 40(1): 241-247.
[13] LIANG T, JIN Y, LI Y, et al. EDCNN: edge enhancement-based densely connected network with compound loss for Low-Dose CT denoising[C]//Proceedings of the 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2020: 193-198.
[14] JIANG X, WANG L, HE Z, et al. Learning a frequency separation network with hybrid convolution and adaptive aggregation for low-dose CT denoising[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021: 919-925.
[15] LI Z, LIU Y, SHU H, et al. Multi-scale feature fusion network for low-dose CT denoising[J]. Journal of Digital Imaging, 2023, 36(4): 1808-1825.
[16] 郭志涛, 周峰, 赵琳琳, 等. 边缘保护与多阶段网络相结合的LDCT图像去噪[J]. 计算机工程与应用, 2023, 59(1): 252-258.
GUO Z T, ZHOU F, ZHAO L L, et al. LDCT image denoising based on edge protection and multi-stage network[J]. Computer Engineering and Applications, 2023, 59(1): 252-258.
[17] 欧阳婉卿, 张剑, 彭辉, 等. 基于改进生成对抗网络的低剂量CT去噪算法[J]. 光电子·激光, 2022, 33(2): 171-180.
OUYANG W Q, ZHANG J, PENG H, et al. Based on improved generated against network of low dose CT denoising algorithm[J]. Journal of Optoelectronics·Laser, 2022, 33(2): 171-180.
[18] YANG Q, YAN P, ZHANG Y, et al. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348-1357.
[19] GENG M, MENG X, YU J, et al. Content-noise complementary learning for medical image denoising[J]. IEEE Transactions on Medical Imaging, 2022, 41(2): 407-419.
[20] 冯婉妍, 蒙祖强, 陈冲. 融合Transformer与UNet的低剂量CT图像去噪方法[J]. 广西大学学报 (自然科学版), 2023, 48(4): 972-984.
FENG W Y, MENG Z Q, CHEN C. Low dose CT image denoising method with Transformer and UNet[J]. Journal of Guangxi University (Natural Science Edition), 2023, 13(4): 972-984.
[21] WANG D, FAN F, WU Z, et al. CTformer: convolution-free Token2Token dilated vision transformer for low-dose CT denoising[J]. Physics in Medicine & Biology, 2023, 68(6): 065012.
[22] 颜溶標, 刘文婷, 谷亚男, 等. 基于多尺度边缘提取和加权卷积稀疏编码的低剂量CT去噪算法[J]. 国外电子测量技术, 2022, 41(9): 9-15.
YAN R B, LIU W T, GU Y N, et al. Low dose CT denoising algorithm based on multi-scale edge extraction and weighted convolutional sparse coding[J]. Foreign Electronic Measurement Technology, 2022, 41(9): 9-15.
[23] WANG H, LI Y, MENG D, et al. Adaptive convolutional dictionary network for CT metal artifact reduction[C]//Proceedings of the 2022 31st International Joint Conference on Artificial Intelligence, 2022: 1401-1407.
[24] YAN R, LIU Y, LIU Y H, et al. Image denoising for low-dose CT via convolutional dictionary learning and neural network[J]. IEEE Transactions on Computational Imaging, 2023, 9: 83-93.
[25] LI Z, LIU Y, CHEN Y, et al. Dual-domain fusion deep convolutional neural network for low-dose CT denoising[J]. Journal of X-Ray Science and Technology, 2023, 31(4): 757-775.
[26] LIU Y, MA J, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Physics in Medicine & Biology, 2012, 57(23): 7923.
[27] LIU Y H, LIU Y, ZHANG P, et al. Cone-beam computed tomography based on truncated adaptive-weight total variation[J]. NDT & E International, 2023, 133: 102755.
[28] QI H, TAN S, LI Z. Anisotropic weighted total variation feature fusion network for remote sensing image denoising[J]. Remote Sensing, 2022, 14(24): 6300.
[29] GONG Y, SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786-1798.
[30] SU Q, BI B, ZHANG P, et al. GPR image clutter suppression using gaussian curvature decomposition in the PCA domain[J]. Remote Sensing, 2022, 14(19): 4879.
[31] TANG W, LIN Z, GONG Y. GC-Net: an unsupervised network for gaussian curvature optimization on images[J]. Journal of Signal Processing Systems, 2023, 95(1): 77-88.
[32] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7132-7141.
[33] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[34] FANG F, LI J, YUAN Y, et al. Multilevel edge features guided network for image denoising[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9): 3956-3970.
[35] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[36] 王宇庆, 刘维亚, 王勇. 一种基于局部方差和结构相似度的图像质量评价方法[J]. 光电子·激光, 2008, 19(11): 1546-1553.
WANG Y Q, LIU W Y, WANG Y. Image quality assessment based on local variance and structure similarity[J]. Journal of Optoelectronics·Laser, 2008, 19(11): 1546-1553.
[37] XUE W, ZHANG L, MOU X, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2013, 23(2): 684-695.
[38] ZHANG Lin ZHANG Lei, MOU X, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
[39] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. |