计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 253-263.DOI: 10.3778/j.issn.1002-8331.2402-0037

• 图形图像处理 • 上一篇    下一篇

AWTV和高斯注意力引导的LDCT图像去噪网络

李志媛,刘祎,张鹏程,张丽媛,任时磊,芦婧,桂志国   

  1. 1.中北大学 软件学院,太原 030051
    2.中北大学 省部共建动态测试技术国家重点实验室,太原 030051
    3.中北大学 信息与通信工程学院,太原 030051
    4.中北大学 计算机科学与技术学院,太原 030051
  • 出版日期:2025-02-01 发布日期:2025-01-24

Adaptive Weighted Total Variational and Gaussian Attention-Guided LDCT Image Denoising Networks

LI Zhiyuan, LIU Yi, ZHANG Pengcheng, ZHANG Liyuan, REN Shilei, LU Jing, GUI Zhiguo   

  1. 1.School of Software, North University of China, Taiyuan 030051, China
    2.State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
    3.School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
    4.School of Computer Science and Technology, North University of China, Taiyuan 030051, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 低剂量CT(low-dose CT,LDCT)图像的去噪任务是一个高度复杂且不确定的逆问题。现有的基于CNN的方法虽然有效,但提升空间有限且计算成本高。相比之下,将图像先验知识与模型相结合来辅助图像去噪是一种更有效的方法。提出了一种名为AWTV_GANet的LDCT图像去噪框架。该框架利用自适应加权总变分(adaptive weighted total variation,AWTV)展开和高斯注意力引导的方法,通过端到端的CNN模型,将噪声优化模型、边缘检测模型和图像重建模型集成在一起。实验证明,AWTV_GANet能够准确地去除伪影噪声,并恢复出更精细的结构细节,与其他方法相比具有优异的性能。

关键词: 低剂量CT, 图像去噪, 深度学习, 自适应加权总变分

Abstract: The task of denoising low-dose CT (LDCT) images is a highly complex and uncertain inverse problem. Although the existing CNN-based methods are effective, the improvement space is limited and the calculation cost is high. In contrast, it is a more effective method to combine image prior knowledge with model to assist image denoising. In this paper, an LDCT image denoising framework named AWTV_GANet is proposed. The framework uses adaptive weighted total variation (AWTV) expansion and Gaussian attention guidance to integrate the noise optimization model, edge detection model and image reconstruction model through the end-to-end CNN model. Experiments show that AWTV_GANet can accurately remove artifact noise and recover finer structural details, which has excellent performance compared with other methods.

Key words: low-dose CT, image denoising, deep learning, adaptive weighted total variation