[1] LONG Y, HUANG S L, PENG L S, et al. A new dual magnetic sensor probe for lift-off compensation in magnetic flux leakage detection[C]//Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2020: 1-6.
[2] LI Y T, KUO P, GUO J I. Automatic industry PCB board DIP process defect detection with deep ensemble method[C]//Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 2020: 453-459.
[3] DING R, ZHANG C, ZHU Q, et al. Unknown defect detection for printed circuit board based on multi-scale deep similarity measure method[J]. The Journal of Engineering, 2020(13): 388-393.
[4] AN K, ZHANG Y. LPViT: a transformer based model for PCB image classification and defect detection[J]. IEEE Access, 2022, 10: 42542-42553.
[5] ZHANG N, YE C, TAO X C, et al. Flexible PCB with differential array coils for irregular shape inspection[C]//Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), 2021: 1-6.
[6] LIU G, WEN H. Printed circuit board defect detection based on MobileNet-Yolo-Fast[J]. Journal of Electronic Imaging, 2021, 30(4): 043004.
[7] QIAN X, WANG X, YANG S, et al. LFF-YOLO: a YOLO algorithm with lightweight feature fusion network for multi-scale defect detection[J]. IEEE Access, 2022, 10: 130339-130349.
[8] LING Q, ISA N A M. Printed circuit board defect detection methods based on image processing, machine learning and deep learning: a survey[J]. IEEE Access, 2023, 11: 15921-15944.
[9] QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6070-6079.
[10] ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[11] HUANG W, WEI P, ZHANG M, et al. HRIPCB: a challenging dataset for PCB defects detection and classification[J]. The Journal of Engineering, 2020 (13): 303-309.
[12] 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238.
XUN Y W, LI J, DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238.
[13] 闵锋, 况永刚, 郝琳琳, 等. 多分支特征映射的遥感图像目标检测算法[J]. 计算机科学与探索, 2024, 18(6): 1543-1555.
MING F, KUANG Y G, HAO L L, et al. Remote sensing image object detection algorithm based on multi-branch feature mapping[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1543-1555.
[14] 朱煜, 方观寿, 郑兵兵, 等. 基于旋转框精细定位的遥感目标检测方法研究[J]. 自动化学报, 2023, 49(2): 415-424.
ZHU Y, FANG G S, ZHENG B B, et al. Research on detection method of refined rotated boxes in remote sensing[J]. Acta Automatica Sinica, 2023, 49(2): 415-424.
[15] YANG W, YU H, LUO X, et al. Geometric relation-based feature aggregation for 3D small object detection[J]. Applied Intelligence, 2024, 54(19): 8924-8938.
[16] GE L, WANG G, ZHANG T, et al. Regression-guided refocusing learning with feature alignment for remote sensing tiny object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4408314.
[17] GANGA B, LATA B T, VENUGOPAL K R. Object detection and crowd analysis using deep learning techniques: comprehensive review and future directions[J]. Neurocomputing, 2024: 127932.
[18] WANG Y, WANG J, CAO Y, et al. Integrated inspection on PCB manufacturing in cyber-physical-social systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(4): 2098-2106.
[19] GEHRIG M, SCARAMUZZA D. Recurrent vision transformers for object detection with event cameras[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 13884-13893.
[20] HUANG Z, DAI H, XIANG T Z, et al. Feature shrinkage pyramid for camouflaged object detection with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 5557-5566.
[21] MA S, WANG Y, WEI Y, et al. CAT: LoCalization and IdentificAtion cascade detection transformer for open-world object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 19681-19690.
[22] LI Y, GE Z, YU G, et al. BEVDepth: acquisition of reliable depth for multi?view 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 1477-1485.
[23] DONG N, ZHANG Y Q, DING M, et al. Incremental-DETR: incremental few-shot object detection via self-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 543-551.
[24] CHEN S F, SUN P Z, SONG Y B, et al. DiffusionDet: diffusion model for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 19830-19843.
[25] LIU Y F, YAN J J, JIA F, et al. PETRv2: a unified framework for 3D perception from multi-camera images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 3262-3272.
[26] FANG Y X, YANG S S, WANG S J, et al. Unleashing vanilla vision Transformer with masked image modeling for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6244-6253.
[27] KIM B, CHIO T, KANG J, et al. UnionDet: union-level detector Towards real-time human-object interaction detection[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, 2020: 498-514.
[28] GENG Z Q, SHI C J, HAN Y M. Intelligent small sample defect detection of water walls in power plants using novel deep learning integrating deep convolutional GAN[J]. IEEE Transactions on Industrial Informatics, 2022, 19(6): 7489-7497.
[29] LIU J S, CUI G L, XIAO C D. A real-time and efficient surface defect detection method based on YOLOv4[J]. Journal of Real-Time Image Processing, 2023, 20(4): 77.
[30] YU J X, FU L M, LIANG P, et al. Security defect detection via code review: a study of the OpenStack and Qt communities[C]//Proceedings of the 2023 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 2023: 1-12.
[31] ZHANG J J, COSMA G, BUGBY S, et al. Morphological image analysis and feature extraction for reasoning with AI-based defect detection and classification models[C]//Proceedings of the 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 2023: 1104-1111.
[32] GUO B Y, WANG Y T, ZHEN S, et al. SPEED: semantic prior and extremely efficient dilated convolution network for real-time metal surface defects detection[J]. IEEE Transactions on Industrial Informatics, 2023, 19(12): 11380-11390.
[33] DING H Z, WU Z K, ZHANG J Y, et al. LERENet: eliminating intra-class differences for metal surface defect few-shot semantic segmentation[J]. arXiv:2403.11122, 2024.
[34] HSU C C, LEE C M, SUN C H, et al. OCR is all you need: importing multi-modality into image-based defect detection system[J]. arXiv:2403.11536, 2024.
[35] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[36] WANG C Y, LIAO H Y M, YEH I H. Designing network design strategies through gradient path analysis[J]. arXiv:2211.04800, 2022.
[37] REN S C, ZHOU D Q, HE S F, et al. Shunted self-attention via multi-scale token aggregation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10853-10862.
[38] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[39] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[40] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 2016: 21-37.
[41] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv:2305.09972, 2023.
[42] TANG S L, HE F, HUANG X L, et al. Online PCB defect detector on a new PCB defect dataset[J]. arXiv:1902.06197, 2019. |