[1] NINOS A, HASCH J, HEIZMANN M, et al. Radar-based robust people tracking and consumer applications[J]. IEEE Sensors Journal, 2022, 22(4): 3726-3735.
[2] 李小柳. 车载4D毫米波雷达的目标检测关键技术研究[D]. 南京: 南京理工大学, 2021.
LI X L. Key technologies research on target detection of vehicle-mounted 4D millimeter-wave radar[D]. Nanjing: Nanjing University of Science and Technology, 2021.
[3] ZENG X, SHI Y, ZHOU A. Multi-HAR: human activity recognition in multi-person scenes based on mmWave sensing[C]//Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, 2022: 1789-1793.
[4] HUANG T, LIU G, LI S, et al. RPCRS: human activity recognition using millimeter wave radar[C]//Proceedings of the 2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS), Nanjing, 2023: 122-129.
[5] WANG M, WANG F, LIU C, et al. DBSCAN clustering algorithm of millimeter wave radar based on multi frame joint[C]//Proceedings of the 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP), Hangzhou, 2022: 1049-1053.
[6] SONG P, MEI L, CHENG H. Human semantic segmentation using millimeter-wave radar sparse point clouds[C]//Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Rio de Janeiro, Brazil, 2023: 1275-1280.
[7] SHEN Z, NUNEZ-YANEZ J, DAHNOUN N. Multiple human tracking and fall detection real-time system using millimeter-wave radar and data fusion[C]//Proceedings of the 2023 12th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 2023: 1-6.
[8] LI W, CHEN R, WU Y, et al. Indoor positioning system using a single-chip millimeter wave radar[J]. IEEE Sensors Journal, 2023, 23(5): 5232-5242.
[9] CHEN H, ZHAO C, ZHAO C, et al. LSS-target intelligent detection method suitable for complex geographical environment[C]//Proceedings of the 2022 3rd China International SAR Symposium (CISS), Shanghai, 2022: 1-5.
[10] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996: 226-231.
[11] 龚伟. 基于毫米波雷达的人数统计、姿态识别及跟踪系统的设计和实现[D]. 武汉: 华中科技大学, 2020.
GONG W. Design and implementation of a people counting, pose recognition, and tracking system based on millimeter-wave radar[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[12] ZHOU H, ZHANG G, KONG L, et al. Random forest based adaptive DBSCAN for reducing noise in mmwave radar point clouds[C]//Proceedings of the 2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Toronto, ON, Canada, 2022.
[13] 鞠夕强, 孟文, 孟祥印, 等. 一种改进的毫米波雷达聚类算法[J]. 科学技术与工程, 2021, 21(20): 8537-8543.
JU X Q, MENG W, MENG X Y, et al. An improved clustering algorithm for millimeter wave radar[J]. Science Technology and Engineering, 2021, 21(20): 8537-8543.
[14] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[15] 王军华, 李建军, 李俊山, 等. 自适应快速搜索密度峰值聚类算法[J]. 计算机工程与应用, 2019, 55(24): 122-127.
WANG J H, LI J J, LI J S, et al. Adaptive fast search density peak clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(24): 122-127.
[16] 王芙银, 张德生, 张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3): 94-102.
WANG F Y, ZHANG D S, ZHANG X. Adaptive density peaks clustering algorithm combining with whale optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102.
[17] DE VARGAS R R, BEDREGAL B R C. A way to obtain the quality of a partition by adjusted rand index[C]//Proceedings of the 2013 2nd Workshop-School on Theoretical Computer Science, Rio Grande, 2013: 67-71.
[18] 徐童童, 解滨, 张喜梅, 等. 自适应聚类中心策略优化的密度峰值聚类算法[J]. 计算机工程与应用, 2023, 59(21): 91-101.
XU T T, XIE B, ZHANG X M, et al. Density peak clustering algorithm optimized by adaptive clustering center strategy[J]. Computer Engineering and Applications, 2023, 59(21): 91-101.
[19] AMELIO A, PIZZUTI C. Is normalized mutual information a fair measure for comparing community detection methods?[C]//Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris France, 2015: 1584-1585.
[20] GUO B, TIAN L, ZHANG J, et al. A clustering algorithm based on joint kernel density for millimeter wave radio channels[C]//Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019: 1-5. |