计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 359-366.DOI: 10.3778/j.issn.1002-8331.2309-0286

• 工程与应用 • 上一篇    

针对毫米波雷达人员目标稀疏点云的聚类算法

杨冬,曾春艳,郝丹妮,万相奎   

  1. 1.湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,武汉 430068
    2.湖北工业大学 电气与电子工程学院,武汉 430068
  • 出版日期:2025-02-01 发布日期:2025-01-24

Clustering Algorithm for Sparse Point Clouds of Personnel Targets in Millimeter-Wave Radar

YANG Dong, ZENG Chunyan, HAO Danni, WAN Xiangkui   

  1. 1.Hubei Provincial Key Laboratory of Solar Energy Efficient Utilization and Energy Storage Operation Control, Hubei University of Technology, Wuhan 430068, China
    2.School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 毫米波雷达室内人员目标检测存在点云稀疏且有零散噪声点的问题,传统基于密度聚类算法受参数影响不能适应多变的目标点云数据,无法实现精准聚类。对此进行研究提出了一种针对人员目标稀疏点云的聚类算法。建立平均局部密度信息熵和邻域半径(Eps)的关系;利用DBSCAN算法识别零散噪声点并去除;利用每个点的局部密度和相对距离的乘积得到聚类中心权值,并画出降序图;在降序图中引入自适应指数衰减函数曲线,从而自动获得聚类中心,并完成聚类。通过实验验证,并与CFSFDP算法和DBSCAN算法进行对比,结果表明,提出的算法具有较高的ARI、AMI、NMI、FMI值,获得较好的聚类效果,适用于毫米波雷达室内检测场景。

关键词: 毫米波雷达, 点云聚类, 稀疏点云, 目标检测

Abstract: The indoor personnel target detection using millimeter-wave radar often encounters issues with sparse point clouds and scattered noise points. Traditional density-based clustering algorithms are sensitive to parameters and cannot adapt well to the varying target point cloud data, making precise clustering challenging. To address this, a clustering algorithm tailored for sparse point clouds of personnel targets is proposed in this research. Firstly, a relationship is established between the average local density information entropy and the neighborhood radius (Eps). Secondly, the DBSCAN algorithm is employed to identify and remove scattered noise points. Subsequently, the clustering center weight is calculated using the product of local density and relative distance of each point, and a descending graph is plotted. Then, an adaptive exponential decay function curve is introduced into the descending graph to automatically obtain cluster centers and complete the clustering process. Experimental validation is conducted, and comparisons are made with the CFSFDP algorithm and the DBSCAN algorithm. The results demonstrate that the proposed algorithm achieves higher ARI, AMI, NMI, and FMI values, indicating better clustering performance, and is suitable for millimeter-wave radar indoor detection scenarios.

Key words: millimeter-wave radar, point cloud clustering, sparse point cloud, target detection