[1] JU W, FANG Z, GU Y, et al. A comprehensive survey on deep graph representation learning[EB/OL]. (2023-04-19) [2023-08-26]. https://arxiv.org/abs/2304.05055.
[2] 崔文岳, 谷远利, 赵胜利, 等. 基于有向图卷积与门控循环单元的短时交通流预测方法[J]. 交通信息与安全, 2023, 41(2): 121-128.
CUI W Y, GU Y L, ZHAO S L, et al. A method of predicting short-term traffic flows based on a DGC-GRU model[J]. Journal of Transport Information and Safety, 2023, 41(2): 121-128.
[3] GEISLER S, LI Y, MANKOWITZ D, et al. Transformers meet directed graphs[C]//Proceedings of the International Conference on Machine Learning, 2023.
[4] 高春晓, 卢士帅, 刘琼昕, 等. 一种融合关系抽取的推荐系统[J]. 北京理工大学学报, 2022, 42(11): 1191-1199.
GAO C X, LU S S, LIU Q X, et al. A recommendation system with fusion relation extraction[J]. Transactions of Beijing Institute of Technology, 2022, 42(11): 1191-1199.
[5] 檀彦超, 郑小林, 魏翔宇, 等. 基于度量学习的多空间推荐系统[J]. 计算机学报, 2022, 45(1): 1-16.
TAN Y C, ZHENG X L, WEI X Y, et al. Multi-space recommender systems via metric learning[J]. Chinese Journal of Computers, 2022, 45(1): 1-16.
[6] 向露, 朱军楠, 周玉, 等. 基于多粒度对抗训练的鲁棒跨语言对话系统[J]. 自动化学报, 2021, 47(8): 1855-1866.
XIANG L, ZHU J N, ZHOU Y, et al. Robust cross-lingual dialogue system based on multi-granularity adversarial training[J]. ACTA Automatic Sinica, 2021, 47(8): 1855-1866.
[7] 冯雅茹, 黄贤英, 李伟. 增强深层话题语义的对话引导模型[J]. 计算机工程与应用, 2023, 59(7): 171-179.
FENG Y R, HUANG X Y, LI W. Target-guided conversation model combining enhanced deep topic semantics[J]. Computer Engineering and Applications, 2023, 59(7): 171-179.
[8] 雷景生, 李冉, 杨胜英, 等. 融合社交信息的多图神经网络会话推荐方法[J]. 计算机工程与应用, 2023, 59(15): 264-273.
LEI J S, LI R, YANG S Y, et al. Session-based recommendation based on multi-graph neural network incorporating social information[J]. Computer Engineering and Applications, 2023, 59(15): 264-273.
[9] 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68.
WU B, LIANG X, ZHANG S S, et al. Advances and applications in graph neural network[J]. Chinese Journal of Computers, 2022, 45(1): 35-68.
[10] NING X, ZHENG Y, ZHOU Z, et al. A generic graph-based neural architecture encoding scheme with multifaceted information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(7): 7955-7969.
[11] 张涛, 程毅飞, 孙欣煦. 基于因果推断的图注意力网络[J]. 计算机科学, 2023, 50(S1): 157-165.
ZHANG T, CHENG Y, SUN X. Graph attention networks based on causal inference[J]. Computer Science, 2023, 50(S1): 157-165.
[12] 朱志国, 李伟玥, 姜盼, 等. 图神经网络会话推荐系统综述[J]. 计算机工程与应用, 2023, 59(5): 55-69.
ZHU Z G, LI W Y, JIANG P, et al. Survey of graph neural networks in session recommender systems[J]. Computer Engineering and Applications, 2023, 59(5): 55-69.
[13] 高阳, 张宏莉. 基于随机游走的社区发现方法综述[J]. 通信学报, 2023, 44(6): 198-210.
GAO Y, ZHANG H L. Survey on community detection method based on random walk[J]. Journal on Communications, 2023, 44(6): 198-210.
[14] KOLLIAS G, KALANTZIS V, IDE T, et al. Directed graph autoencoders[C]//Proceedings of the AAAI Conference on Artificial Intelligence, California, USA, 2022: 7211-7219.
[15] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the International Conference on Learning Representations, Toulon, France, 2017.
[16] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceeding of the Neural Information Processing Systems, Barcelona, Spain, 2016: 3837-3845.
[17] TONG Z, LIANG Y, SUN C, et al. Directed graph convolutional network[EB/OL]. (2020-04-29) [2023-08-26]. https://arxiv.org/abs/2004.13970.
[18] TONG Z, LIANG Y, SUN C, et al. Digraph inception convolutional networks[C]//Proceedings of the Neural Information Processing Systems, 2020.
[19] ZHANG X, HE Y, BRUGNONE N, et al. MagNet: a neural network for directed graphs[C]//Proceedings of the Neural Information Processing Systems, 2021: 27003-27015.
[20] ZHANG M, JIANG S, CUI Z, et al. D-VAE: a variational autoencoder for directed acyclic graphs[C]//Proceedings of the Neural Information Processing Systems, Vancouver, Canada, 2019: 1586-1598.
[21] THOST V, CHEN J. Directed acyclic graph neural networks[C]//Proceedings of the International Conference on Learning Representations, 2021.
[22] KINGMA D P, WELLING M. Auto-encoding variational bayes[C]//Proceedings of the International Conference on Learning Representations, Banff, Canada, 2014.
[23] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the International Conference on Learning Representations, New Orleans, USA, 2019.
[24] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the International Conference on Learning Representations, Vancouver, Canada, 2018.
[25] HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 2017: 1024-1034.
[26] KLICPERA J, BOJCHEVSKI A, GUNNEMANN S. Predict then propagate: graph neural networks meet personalized pagerank[C]//Proceedings of the International Conference on Learning Representations, New Orleans, USA, 2019.
[27] LIN L, GAO J. A magnetic framelet-based convolutional neural network for directed graphs[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023. |