张俊华. 多尺度特征融合的脊柱X线图像分割方法[J]. 计算机工程与应用, 2021, 57(8): 214-219.
ZHAO Y, ZHANG J H. Multi-scale feature fusion method for spinal X-ray image segmentation[J]. Computer Engineering and Applications, 2021, 57(8): 214-219.
[2] WEINSTEIN S L, DOLAN L A, WRIGHT J G, et al. Effects of bracing in adolescents with idiopathic scoliosis[J]. New England Journal of Medicine, 2013, 369(16): 1512-1521.
[3] SUNG S, CHAE H W, LEE H S, et al. Incidence and surgery rate of idiopathic scoliosis: a nationwide database study[J]. International Journal of Environmental Research and Public Health, 2021, 18(15): 8152.
[4] 刘晓民, 王哲, 郭伟, 等. 基于掩膜分割的Cobb角测量方法[J]. 北京工业大学学报, 2021, 47(11): 8.
LIU X M, WANG Z, GUO W, et al. Cobb angle measurement base on mask segmentation[J]. Journal of Beijing University of Technology, 2021, 47(11): 8.
[5] NEGRINI S, DONZELLI S, AULISA A G, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth[J]. Scoliosis and Spinal Disorders, 2018, 13(1): 1-48.
[6] KOROVESSIS P, ZACHARATOS S, KOUREAS G, et al. Comparative multifactorial analysis of the effects of idiopathic adolescent scoliosis and scheuermann kyphosis on the self-perceived health status of adolescents treated with brace[J]. European Spine Journal, 2007, 16: 537-546.
[7] LENKE L G, BETZ R R, HARMS J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis[J]. The Journal of Bone and Joint Surgery, 2001, 83(8): 1169-1181.
[8] STOKES I A F. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation[J]. European Spine Journal, 2007, 16: 1621-1628.
[9] LANGENSIEPEN S, SEMLER O, SOBOTTKE R, et al. Measuring procedures to determine the cobb angle in idiopathic scoliosis: a systematic review[J]. European Spine Journal, 2013, 22: 2360-2371.
[10] 魏旋旋, 黄子健, 曹乐, 等. 采用轻量级姿态估计网络的脊柱侧弯筛查方法[J]. 智能系统学报, 2023, 18(5): 1039-1046.
WEI X X, HUANG Z J, CAO L, et al. Scoliosis screening method using lightweight pose estimation network[J]. CAAI Transactions on Intelligent Systems, 2023, 18(5): 1039-1046.
[11] LAFAGE V, SCHWAB F, PATEL A, et al. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity[J]. Spine, 2009, 34(17): E599-E606.
[12] LODER R T, URQUHART A, STEEN H, et al. Variability in cobb angle measurements in children with congenital scoliosis[J]. The Journal of Bone and Joint Surgery. British Volume, 1995, 77(5): 768-770.
[13] ALLEN S, PARENT E, KHORASANI M, et al. Validity and reliability of active shape models for the estimation of cobb angle in patients with adolescent idiopathic scoliosis[J]. Journal of Digital Imaging, 2008, 21: 208-218.
[14] HUANG C, TANG H, FAN W, et al. Fully-automated analysis of scoliosis from spinal x-ray images[C]//Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 2020: 114-119.
[15] RAMIREZ L, DURDLE N G, RASO V J, et al. A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography[J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(1): 84-91.
[16] YANG J, ZHANG K, FAN H, et al. Development and validation of deep learning algorithms for scoliosis screening using back images[J]. Communications Biology, 2019, 2(1): 390.
[17] XU Z, OUYANG J, GAO Q, et al. 2D photogrammetry image of adolescent idiopathic scoliosis screening using deep learning[C]//Proceedings of the International Symposium on Bioinformatics Research and Applications. Cham: Springer Nature Switzerland, 2022: 330-342.
[18] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[19] ZHANG M, PANG K, GAO C, et al. Multi-scale aerial target detection based on densely connected inception ResNet[J]. IEEE Access, 2020, 8: 84867-84878.
[20] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[21] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//Proceedings of the International Conference on Machine Learning, 2017: 1243-1252.
[22] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[23] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[24] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[25] HORNG M H, KUOK C P, FU M J, et al. Cobb angle measurement of spine from X-ray images using convolutional neural network[J]. Computational and Mathematical Methods in Medicine, 2019 (9): 1-18.
[26] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[27] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[28] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 6105-6114.
[29] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. |