计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 286-294.DOI: 10.3778/j.issn.1002-8331.2309-0192

• 图形图像处理 • 上一篇    下一篇

轻量化的多尺度注意力脊柱侧弯筛查方法

郝子强,唐颖,田芳,张岩,詹伟达   

  1. 长春理工大学 电子信息工程学院,长春 130000
  • 出版日期:2025-02-01 发布日期:2025-01-24

Lightweight Multiscale Attention Scoliosis Screening Method

HAO Ziqiang, TANG Ying, TIAN Fang, ZHANG Yan, ZHAN Weida   

  1. College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130000, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 近年来,深度学习越来越多地应用于脊柱侧弯筛查技术研究,并且取得了突出的成效。为了解决脊柱侧弯筛查的精度和效率不高,无法满足大规模脊柱侧弯筛查需要的问题,设计了一种轻量化的多尺度注意力卷积神经网络,对ResNet50进行改进,取得了较好的筛查效果。提出了一种多尺度残差特征提取模块,使用不同大小的卷积核,提取不同尺度的信息;使用三个残差块并在残差块中使用一种混合注意力机制,关注通道和空间两方面的信息,增强特征提取能力;将普通卷积替换成一种深度混洗卷积,在精度损失不多的情况下,提高网络效率;提出了一种多层次特征融合模块,将多个层次信息进行特征融合,提取更加多样化的特征信息。实验证明,相比ResNet50总体准确率提高了11.19个百分点,测试时长减少了2?s。

关键词: 脊柱侧弯, 深度学习, 多尺度特征, 注意力机制

Abstract: In recent years, deep learning has been increasingly applied to the research of scoliosis screening technology and has achieved outstanding results. In order to solve the problem that the accuracy and efficiency of scoliosis screening are not high enough to meet the needs of large-scale scoliosis screening, a lightweight multiscale attention convolutional neural network is designed to improve ResNet50, and better screening results are achieved. A multiscale residual feature extraction module is proposed, which uses convolution kernels of different sizes to extract information at different scales. Three residual blocks are used and a hybrid attention mechanism is used in the residual blocks, which focuses on both channel and spatial information and enhances the feature extraction. The ordinary convolution is replaced by a depthwise shuffle convolution, which improves the efficiency of the network with little loss of accuracy; and a multilevel feature fusion module, which fuses multiple levels of information to extract more diverse feature information. The experiment proves that the overall accuracy is improved by 11.19 percentage points and the test duration is reduced by 2 seconds compared with ResNet50.

Key words: scoliosis, deep learning, multiscale feature, attention mechanism