[1] SUN W, DAI L, ZHANG X, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448-8463.
[2] 陈飞, 刘云鹏, 李思远. 复杂环境下的交通标志检测与识别方法综述[J]. 计算机工程与应用, 2021, 57(16): 65-73.
CHEN F, LIU Y P, LI S Y. Survey of traffic sign detection and recognition methods in complex environment[J]. Computer Engineering and Applications, 2021, 57(16): 65-73.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[5] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[6] NICOLAS C, FRANCISCO M, GABRIEL S, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[7] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query denoising[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(4): 2239-2251.
[8] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[J]. arXiv:2201.12329, 2022.
[9] ZHANG H, LI F, LIU S, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[10] YAO Z Y, AI J B, LI B X, et al. Efficient DETR: improving end-to-end object detector with dense prior[J]. arXiv:2104.
01318, 2021.
[11] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020.
[12] LV W Y, ZHAO Y A, XU S L, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[14] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[15] LONG X, DENG K, WANG G, et al. PP-YOLO: an effective and efficient implementation of object detector[J]. arXiv:2007.12099, 2020.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[17] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[18] 杨永波, 李栋, 房建东, 等. 面向嵌入式端的轻量级交通信号灯检测算法[J]. 计算机工程与应用, 2024, 60(13): 361-368.
YANG Y B, LI D, FANG J D, et al. Lightweight traffic signal light detection algorithm for embedded terminal[J]. Computer Engineering and Applications, 2024, 60(13): 361-368.
[19] WANG J F, CHEN Y, DONG Z K, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35(10): 7853-7865.
[20] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and attention gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[21] YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 636-644.
[22] HU J, SHEN L, ALBANIE S, Squeeze-and-excitation networks[C]//Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7132-7141.
[23] WANG Q, WU B, ZHU P, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[25] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[26] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022.
[27] 熊恩杰, 张荣芬, 刘宇红, 等. 面向交通标志的Ghost-YOLOv8检测算法[J]. 计算机工程与应用, 2023, 59(20): 200-207.
XIONG E J, ZHANG R F, LIU Y H, et al. Ghost-YOLOv8 detection algorithm for traffic signs[J]. Computer Engineering and Applications, 2023, 59(20): 200-207.
[28] 郎斌柯, 吕斌, 吴建清, 等. 基于CA-BIFPN的交通标志检测模型[J]. 深圳大学学报 (理工版), 2023, 40(3): 335-343.
LANG B K, LU B, WU J Q, et al. A traffic sign detection model based on coordinate attention-bidirectional feature pyramid network[J]. Journal of Shenzhen University (Science & Engineering), 2023, 40(3): 335-343.
[29] 李孟歆, 李易营, 李松昂. 一种改进的YOLOv5小目标交通标志检测方法[J]. 计算机仿真, 2023, 40(10): 152-156.
LI M X, LI Y Y, LI S A. Improved small target traffic sign detection algorithm based on YOLOv5[J]. Computer Simulation, 2023, 40(10): 152-156.
[30] 赵磊, 李栋, 房建东, 等. 面向交通标志的改进YOLO目标检测算法[J]. 图学学报, 2024, 45(4): 779-790.
ZHAO L, LI D, FANG J D, et al. Improved YOLO object detection algorithm for traffic signs[J]. Journal of Graphics, 2024, 45(4): 779-790.
[31] 田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212.
[32] 许明, 屈泰澎, 姜彦吉. 改进YOLOv7在复杂场景下的交通标志检测算法[J/OL]. 计算机工程 [2024-04-27]. https://doi.org/10.19678/j.issn.1000-3428.0069132.
XU M, QU T P, JIANG Y J. Improved YOLOv7 traffic sign detection algorithm in complex scenarios[J/OL]. Computer Engineering [2024-04-27]. https://doi.org/10.19678/j.issn.1000-3428.0069132. |