[1] 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206.
XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications, 2023, 59(9): 198-206.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[5] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[8] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.
02976, 2022.
[9] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[10] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[11] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[12] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[14] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[15] ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[16] SUN F, HE N, LI R, et al. GD-PAN: a multiscale fusion architecture applied to object detection in UAV aerial images[J]. Multimedia Systems, 2024, 30(3): 143-155.
[17] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[18] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Advances in Neural Information Processing Systems 36, 2024: 51094-51112.
[19] MUZAMMUL M, ALGARNI A, GHADI Y Y, et al. Enhancing UAV aerial image analysis: integrating advanced SAHI techniques with real-time detection models on the VisDrone dataset[J]. IEEE Access, 2024, 12: 21621-21633.
[20] AKYON F C, ONUR ALTINUC S, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object detection[C]//Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 966-970.
[21] LI D, YANG P, ZOU Y. Optimizing insulator defect detection with improved DETR models[J]. Mathematics, 2024, 12(10): 1507-1524.
[22] XIE Y, ZHENG S, LI W. Feature-guided spatial attention upsampling for real-time stereo matching network[J]. IEEE MultiMedia, 2021, 28(1): 38-47.
[23] 张储, 徐伟悦, 杨如雪, 等.一种基于优化后的RT-DETR模型的红花目标检测方法和装置: 202410039910[P]. 2024-04-09.
ZHANG C, XU W Y, YANG R X, et al. A method and device for detecting red flower targets based on an optimized RT-DETR model: 202410039910[P]. 2024-04-09.
[24] 李亦涵, 张秀再, 沈涛. 一种改进RT-DETR算法的遥感图像目标检测方法及系统: 202410609716[P]. 2024-06-14.
LI Y H, ZHANG X Z, SHEN T. An improved RT-DETR algorithm for remote sensing image object detection method and system: 202410609716[P]. 2024-06-14.
[25] ZHANG X, SONG Y, SONG T, et al. AKConv: convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[J]. arXiv:2311.11587, 2023.
[26] 庞玉东, 李志星, 刘伟杰, 等. 基于改进实时检测Transformer的塔机上俯视场景小目标检测模型[J/OL]. 计算机应用[2024-04-07]. https://kns.cnki.net/kcms/detail/51.1307.TP.
20240402.2133.013.html.
PANG Y D, LI Z X, LIU W J, et al. Small target detection model of overhead scene on tower crane based on improved real-time detection Transformer[J/OL]. Journal of Computer Applications[2024-04-07]. https://kns.cnki.net/kcms/detail/51.1307.TP.20240402.2133.013.html.
[27] CHEN J, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[28] 胡佳乐, 周敏, 申飞. 面向无人机小目标的RTDETR改进检测算法[J]. 计算机工程与应用, 2024, 60(20): 198-206.
HU J L, ZHOU M, SHEN F. Improved detection algorithm of RTDETR for UAV small target[J]. Computer Engineering and Applications, 2024, 60(20): 198-206.
[29] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[30] LIU W, LU H, FU H, et al. Learning to upsample by learning to sample[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6004-6014.
[31] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. arXiv:2312.06458, 2023.
[32] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[33] WANG J, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3007-3016.
[34] ZHU P F, DU D W, WEN L Y, et al. VisDrone-VID2019: the vision meets drone object detection in video challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 227-235.
[35] ZHU Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2110-2118.
[36] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3974-3983.
[37] 雷帮军, 余翱, 余快. 基于YOLOv8s改进的小目标检测算法[J]. 无线电工程, 2024, 54(4): 857-870.
LEI B J, YU A, YU K. Small object detection algorithm based on improved YOLOv8s[J]. Radio Engineering, 2024, 54(4): 857-870.
[38] 李岩超, 史卫亚, 冯灿. 面向无人机航拍小目标检测的轻量级YOLOv8检测算法[J]. 计算机工程与应用, 2024, 60(17): 167-178.
LI Y C, SHI W Y, FENG C. Lightweight YOLOv8 detection algorithm for small object detection in UAV aerial photography[J]. Computer Engineering and Applications, 2024, 60(17): 167-178. |