[1] ARINDAM C. Smart traffic management of vehicles using faster R-CNN based deep learning method[J]. Scientific Reports, 2024, 14: 10357.
[2] BAI T, LUO J, ZHOU S, et al. Vehicle-type recognition method for images based on improved faster R-CNN model[J]. Sensors, 2024, 24(8): 2650.
[3] 贺艺斌, 田圣哲, 兰贵龙. 基于改进Faster-RCNN算法的行人检测[J]. 汽车实用技术, 2022, 47(5): 34-37.
HE Y B, TIAN S Z, LAN G L. Pedestrian detection based on improved Faster-RCNN algorithm[J]. Automobile Applied Technology, 2022, 47(5): 34-37.
[4] DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275.
[5] YANG Y, CHEN P, DING K, et al. Object detection of inland waterway ships based on improved SSD model[J]. Ships and Offshore Structures, 2023, 18(8): 1192-1200.
[6] 王莹, 田莹. 基于改进YOLOv5s的复杂环境行人检测模型[J]. 微电子学与计算机, 2024, 41(3): 29-36.
WANG Y, TIAN Y. Pedestrian detection model in complex environment based on improved YOLOv5s[J]. Microelectronics & Computer, 2024, 41(3): 29-36.
[7] 刘嘉泽, 王超, 生龙. 基于YOLOv5的行人检测方法研究[J]. 电脑与信息技术, 2024, 32(1): 37-41.
LIU J Z, WANG C, SHENG L. Research on pedestrian detection method based on YOLOv5[J]. Computer and Information Technology, 2024, 32(1): 37-41.
[8] TAHIR N U A, LONG Z, ZHANG Z, et al. PVswin-YOLOv8s: UAV-based pedestrian and vehicle detection for traffic management in smart cities using improved YOLOv8[J]. Drones, 2024, 8(3): 84.
[9] LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162.
[10] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2023: 1-5.
[11] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[12] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv: 2206.02424, 2022.
[13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[14] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[15] ZHANG D, ZHENG Z, LI M, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[16] 盛帅, 段先华, 胡维康, 等. Dynamic-YOLOX: 复杂背景下的苹果叶片病害检测模型[J]. 计算机科学与探索, 2024, 18(8): 2118-2129.
SHENG S, DUAN X H, HU W K, et al. Dynamic-YOLOX: detection model for apple leaf disease in complex background[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2118-2129.
[17] 储珺, 束雯, 周子博, 等. 结合语义和多层特征融合的行人检测[J]. 自动化学报, 2022, 48(1): 282-291.
CHU J, SHU W, ZHOU Z B, et al. Combining semantics with multi-level feature fusion for pedestrian detection[J]. Acta Automatica Sinica, 2022, 48(1): 282-291.
[18] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv: 2107. 08430, 2021.
[19] 颜豪男, 吕伏, 冯永安. 特征级自适应增强的无人机目标检测算法[J]. 计算机科学与探索, 2024, 18(6): 1566-1578.
YAN H N, LYU F, FENG Y A. Feature-level adaptive enhancement for UAV target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1566-1578.
[20] CAI T, ZHANG D, WANG Y, et al. Learning local-global feature representation for pedestrian detection and re-identification[C]//Proceedings of the 2023 7th Asian Conference on Artificial Intelligence Technology, 2023: 756-763.
[21] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 1251-1258.
[22] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv: 2305.09972, 2023.
[23] HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[24] LIU X, PENG H, ZHENG N, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14420-14430.
[25] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[26] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. |